File size: 3,208 Bytes
afd2199
577bb6b
e2522a6
afd2199
 
cd41c0c
a21de06
afd2199
e2522a6
 
08528b3
 
 
 
 
 
 
 
 
 
 
 
 
 
8db8164
 
c76c2fc
8db8164
92499cd
fa05982
8db8164
abeb59d
e2522a6
0e5fb59
 
 
e2522a6
 
a21de06
e2522a6
 
 
 
 
a21de06
e2522a6
a21de06
e2522a6
 
 
 
332fb03
e2522a6
 
 
 
a21de06
e2522a6
 
0e5fb59
8db8164
284aa22
fcbfb53
92499cd
 
afd2199
 
 
 
 
 
 
 
 
92499cd
afd2199
31fdeeb
c76c2fc
92499cd
0e5fb59
 
 
 
 
 
 
92499cd
 
 
 
 
 
 
 
 
 
 
 
31fdeeb
 
 
 
 
 
6b7f67c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import mmpose
import os
import glob
from mmpose.apis import MMPoseInferencer
import gradio as gr
import numpy as np
import cv2

print("[INFO]: Imported modules!")

# inferencer = MMPoseInferencer('hand') # 'hand', 'human , device='cuda'
# inferencer = MMPoseInferencer('human')

inferencer = MMPoseInferencer(pose3d='human3d')
# https://github.com/open-mmlab/mmpose/tree/dev-1.x/configs/body_3d_keypoint/pose_lift
# motionbert_ft_h36m-d80af323_20230531.pth
# simple3Dbaseline_h36m-f0ad73a4_20210419.pth
# videopose_h36m_243frames_fullconv_supervised_cpn_ft-88f5abbb_20210527.pth
# videopose_h36m_81frames_fullconv_supervised-1f2d1104_20210527.pth
# videopose_h36m_27frames_fullconv_supervised-fe8fbba9_20210527.pth
# videopose_h36m_1frame_fullconv_supervised_cpn_ft-5c3afaed_20210527.pth

# https://github.com/open-mmlab/mmpose/blob/main/mmpose/apis/inferencers/pose3d_inferencer.py

print("[INFO]: Downloaded models!")


def poses(photo):
    print("[INFO]: Running inference!")
    result_generator = inferencer(photo, 
                                  vis_out_dir =".",
                                  return_vis=True,
                                  thickness=2)    
    
    for result in result_generator:
         print("[INFO] Result: ", result)
    # # Prepare to save video
    # output_file = os.path.join("output.mp4")

    # fourcc = cv2.VideoWriter_fourcc(*"mp4v")  # Codec for MP4 video
    # fps = 32
    # height = 480
    # width = 640
    # size = (width,height)

    # out_writer = cv2.VideoWriter(output_file, fourcc, fps, size)

    # for result in result_generator:
    #     print("[INFO] Result: ", result)
    #     frame = result["visualization"]
    #     out_writer.write(cv2.cvtColor(frame[0], cv2.COLOR_BGR2RGB))

    # print(os.listdir())
    # print("[INFO]: Visualizing results!")
    # print(os.listdir())
    # print()

    # out_writer.release()
    # cv2.destroyAllWindows() # Closing window
    output_file = glob.glob("*.mp4")

    return photo #output_file



# # specify detection model by alias
# # the available aliases include 'human', 'hand', 'face', 'animal',
# # as well as any additional aliases defined in mmdet
# inferencer = MMPoseInferencer(
#     # suppose the pose estimator is trained on custom dataset
#     pose2d='custom_human_pose_estimator.py',
#     pose2d_weights='custom_human_pose_estimator.pth',
#     det_model='human'
# )

    
def run():
    #https://github.com/open-mmlab/mmpose/blob/main/docs/en/user_guides/inference.md
    webcam = gr.Interface(
        fn=poses,
        inputs= gr.Video(source="webcam"),
        outputs =  gr.PlayableVideo(format='mp4', interactive=True),
        title = 'Pose estimation', 
        description = 'Pose estimation on video',
        allow_flagging=False
        )

    file = gr.Interface(
        poses,
        inputs = gr.Video(source="upload"),
        outputs = gr.PlayableVideo(format='mp4', interactive=True),
        allow_flagging=False
    )
    demo = gr.TabbedInterface(
            interface_list=[file, webcam],
            tab_names=["From a File", "From your Webcam"]
        )



    demo.launch(server_name="0.0.0.0", server_port=7860)


if __name__ == "__main__":
    run()