|
import datetime |
|
import os |
|
import sys |
|
import tempfile |
|
import time |
|
import zipfile |
|
from typing import List, Tuple |
|
|
|
import gradio as gr |
|
import spaces |
|
|
|
from gpu_info import stop_watcher, watch_gpu_memory |
|
|
|
PWD = os.path.dirname(__file__) |
|
CHECKPOINTS_PATH = "/data/checkpoints" |
|
LOG_DIR = os.path.join(PWD, "logs") |
|
os.makedirs(LOG_DIR, exist_ok=True) |
|
|
|
try: |
|
import os |
|
|
|
from huggingface_hub import login |
|
|
|
|
|
hf_token = os.environ["HF_TOKEN"] |
|
if hf_token: |
|
login(token=hf_token) |
|
print("✅ Authenticated with Hugging Face") |
|
else: |
|
print("No HF_TOKEN found, trying without authentication...") |
|
except Exception as e: |
|
print(f"Authentication failed: {e}") |
|
|
|
|
|
from download_checkpoints import main as download_checkpoints |
|
|
|
os.makedirs(CHECKPOINTS_PATH, exist_ok=True) |
|
download_checkpoints(hf_token="", output_dir=CHECKPOINTS_PATH, model="7b_av") |
|
|
|
|
|
from test_environment import main as check_environment |
|
from test_environment import setup_environment |
|
|
|
setup_environment() |
|
|
|
|
|
os.environ["CUDA_HOME"] = "/usr/local/cuda" |
|
os.environ["LD_LIBRARY_PATH"] = "$CUDA_HOME/lib:$CUDA_HOME/lib64:$LD_LIBRARY_PATH" |
|
os.environ["PATH"] = "$CUDA_HOME/bin:/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:$PATH" |
|
|
|
if not check_environment(): |
|
sys.exit(1) |
|
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
|
|
import copy |
|
import json |
|
import random |
|
from io import BytesIO |
|
|
|
import torch |
|
|
|
from cosmos_transfer1.checkpoints import ( |
|
BASE_7B_CHECKPOINT_AV_SAMPLE_PATH, |
|
BASE_7B_CHECKPOINT_PATH, |
|
EDGE2WORLD_CONTROLNET_DISTILLED_CHECKPOINT_PATH, |
|
) |
|
from cosmos_transfer1.diffusion.inference.inference_utils import ( |
|
validate_controlnet_specs, |
|
) |
|
from cosmos_transfer1.diffusion.inference.preprocessors import Preprocessors |
|
from cosmos_transfer1.diffusion.inference.world_generation_pipeline import ( |
|
DiffusionControl2WorldGenerationPipeline, |
|
DistilledControl2WorldGenerationPipeline, |
|
) |
|
from cosmos_transfer1.utils import log, misc |
|
from cosmos_transfer1.utils.io import read_prompts_from_file, save_video |
|
from helper import parse_arguments |
|
|
|
torch.enable_grad(False) |
|
torch.serialization.add_safe_globals([BytesIO]) |
|
|
|
|
|
def inference(cfg, control_inputs, chunking) -> Tuple[List[str], List[str]]: |
|
video_paths = [] |
|
prompt_paths = [] |
|
|
|
control_inputs = validate_controlnet_specs(cfg, control_inputs) |
|
misc.set_random_seed(cfg.seed) |
|
|
|
device_rank = 0 |
|
process_group = None |
|
if cfg.num_gpus > 1: |
|
from megatron.core import parallel_state |
|
|
|
from cosmos_transfer1.utils import distributed |
|
|
|
distributed.init() |
|
parallel_state.initialize_model_parallel(context_parallel_size=cfg.num_gpus) |
|
process_group = parallel_state.get_context_parallel_group() |
|
|
|
device_rank = distributed.get_rank(process_group) |
|
|
|
preprocessors = Preprocessors() |
|
|
|
if cfg.use_distilled: |
|
assert not cfg.is_av_sample |
|
checkpoint = EDGE2WORLD_CONTROLNET_DISTILLED_CHECKPOINT_PATH |
|
pipeline = DistilledControl2WorldGenerationPipeline( |
|
checkpoint_dir=cfg.checkpoint_dir, |
|
checkpoint_name=checkpoint, |
|
offload_network=cfg.offload_diffusion_transformer, |
|
offload_text_encoder_model=cfg.offload_text_encoder_model, |
|
offload_guardrail_models=cfg.offload_guardrail_models, |
|
guidance=cfg.guidance, |
|
num_steps=cfg.num_steps, |
|
fps=cfg.fps, |
|
seed=cfg.seed, |
|
num_input_frames=cfg.num_input_frames, |
|
control_inputs=control_inputs, |
|
sigma_max=cfg.sigma_max, |
|
blur_strength=cfg.blur_strength, |
|
canny_threshold=cfg.canny_threshold, |
|
upsample_prompt=cfg.upsample_prompt, |
|
offload_prompt_upsampler=cfg.offload_prompt_upsampler, |
|
process_group=process_group, |
|
) |
|
else: |
|
checkpoint = BASE_7B_CHECKPOINT_AV_SAMPLE_PATH if cfg.is_av_sample else BASE_7B_CHECKPOINT_PATH |
|
|
|
|
|
pipeline = DiffusionControl2WorldGenerationPipeline( |
|
checkpoint_dir=cfg.checkpoint_dir, |
|
checkpoint_name=checkpoint, |
|
offload_network=cfg.offload_diffusion_transformer, |
|
offload_text_encoder_model=cfg.offload_text_encoder_model, |
|
offload_guardrail_models=cfg.offload_guardrail_models, |
|
guidance=cfg.guidance, |
|
num_steps=cfg.num_steps, |
|
fps=cfg.fps, |
|
seed=cfg.seed, |
|
num_input_frames=cfg.num_input_frames, |
|
control_inputs=control_inputs, |
|
sigma_max=cfg.sigma_max, |
|
blur_strength=cfg.blur_strength, |
|
canny_threshold=cfg.canny_threshold, |
|
upsample_prompt=cfg.upsample_prompt, |
|
offload_prompt_upsampler=cfg.offload_prompt_upsampler, |
|
process_group=process_group, |
|
chunking=chunking, |
|
) |
|
|
|
if cfg.batch_input_path: |
|
log.info(f"Reading batch inputs from path: {cfg.batch_input_path}") |
|
prompts = read_prompts_from_file(cfg.batch_input_path) |
|
else: |
|
|
|
prompts = [{"prompt": cfg.prompt, "visual_input": cfg.input_video_path}] |
|
|
|
batch_size = cfg.batch_size if hasattr(cfg, "batch_size") else 1 |
|
if any("upscale" in control_input for control_input in control_inputs) and batch_size > 1: |
|
batch_size = 1 |
|
log.info("Setting batch_size=1 as upscale does not support batch generation") |
|
os.makedirs(cfg.video_save_folder, exist_ok=True) |
|
for batch_start in range(0, len(prompts), batch_size): |
|
|
|
batch_prompts = prompts[batch_start : batch_start + batch_size] |
|
actual_batch_size = len(batch_prompts) |
|
|
|
batch_prompt_texts = [p.get("prompt", None) for p in batch_prompts] |
|
batch_video_paths = [p.get("visual_input", None) for p in batch_prompts] |
|
|
|
batch_control_inputs = [] |
|
for i, input_dict in enumerate(batch_prompts): |
|
current_prompt = input_dict.get("prompt", None) |
|
current_video_path = input_dict.get("visual_input", None) |
|
|
|
if cfg.batch_input_path: |
|
video_save_subfolder = os.path.join(cfg.video_save_folder, f"video_{batch_start+i}") |
|
os.makedirs(video_save_subfolder, exist_ok=True) |
|
else: |
|
video_save_subfolder = cfg.video_save_folder |
|
|
|
current_control_inputs = copy.deepcopy(control_inputs) |
|
if "control_overrides" in input_dict: |
|
for hint_key, override in input_dict["control_overrides"].items(): |
|
if hint_key in current_control_inputs: |
|
current_control_inputs[hint_key].update(override) |
|
else: |
|
log.warning(f"Ignoring unknown control key in override: {hint_key}") |
|
|
|
|
|
log.info("running preprocessor") |
|
preprocessors( |
|
current_video_path, |
|
current_prompt, |
|
current_control_inputs, |
|
video_save_subfolder, |
|
cfg.regional_prompts if hasattr(cfg, "regional_prompts") else None, |
|
) |
|
batch_control_inputs.append(current_control_inputs) |
|
|
|
regional_prompts = [] |
|
region_definitions = [] |
|
if hasattr(cfg, "regional_prompts") and cfg.regional_prompts: |
|
log.info(f"regional_prompts: {cfg.regional_prompts}") |
|
for regional_prompt in cfg.regional_prompts: |
|
regional_prompts.append(regional_prompt["prompt"]) |
|
if "region_definitions_path" in regional_prompt: |
|
log.info(f"region_definitions_path: {regional_prompt['region_definitions_path']}") |
|
region_definition_path = regional_prompt["region_definitions_path"] |
|
if isinstance(region_definition_path, str) and region_definition_path.endswith(".json"): |
|
with open(region_definition_path, "r") as f: |
|
region_definitions_json = json.load(f) |
|
region_definitions.extend(region_definitions_json) |
|
else: |
|
region_definitions.append(region_definition_path) |
|
|
|
if hasattr(pipeline, "regional_prompts"): |
|
pipeline.regional_prompts = regional_prompts |
|
if hasattr(pipeline, "region_definitions"): |
|
pipeline.region_definitions = region_definitions |
|
|
|
|
|
batch_outputs = pipeline.generate( |
|
prompt=batch_prompt_texts, |
|
video_path=batch_video_paths, |
|
negative_prompt=cfg.negative_prompt, |
|
control_inputs=batch_control_inputs, |
|
save_folder=video_save_subfolder, |
|
batch_size=actual_batch_size, |
|
) |
|
if batch_outputs is None: |
|
log.critical("Guardrail blocked generation for entire batch.") |
|
continue |
|
|
|
videos, final_prompts = batch_outputs |
|
for i, (video, prompt) in enumerate(zip(videos, final_prompts)): |
|
if cfg.batch_input_path: |
|
video_save_subfolder = os.path.join(cfg.video_save_folder, f"video_{batch_start+i}") |
|
video_save_path = os.path.join(video_save_subfolder, "output.mp4") |
|
prompt_save_path = os.path.join(video_save_subfolder, "prompt.txt") |
|
else: |
|
video_save_path = os.path.join(cfg.video_save_folder, f"{cfg.video_save_name}.mp4") |
|
prompt_save_path = os.path.join(cfg.video_save_folder, f"{cfg.video_save_name}.txt") |
|
|
|
if device_rank == 0: |
|
os.makedirs(os.path.dirname(video_save_path), exist_ok=True) |
|
save_video( |
|
video=video, |
|
fps=cfg.fps, |
|
H=video.shape[1], |
|
W=video.shape[2], |
|
video_save_quality=5, |
|
video_save_path=video_save_path, |
|
) |
|
video_paths.append(video_save_path) |
|
|
|
|
|
with open(prompt_save_path, "wb") as f: |
|
f.write(prompt.encode("utf-8")) |
|
|
|
prompt_paths.append(prompt_save_path) |
|
|
|
log.info(f"Saved video to {video_save_path}") |
|
log.info(f"Saved prompt to {prompt_save_path}") |
|
|
|
|
|
if cfg.num_gpus > 1: |
|
parallel_state.destroy_model_parallel() |
|
import torch.distributed as dist |
|
|
|
dist.destroy_process_group() |
|
|
|
return video_paths, prompt_paths |
|
|
|
|
|
def create_zip_for_download(filename, files_to_zip): |
|
temp_dir = tempfile.mkdtemp() |
|
zip_path = os.path.join(temp_dir, f"{os.path.splitext(filename)[0]}.zip") |
|
|
|
with zipfile.ZipFile(zip_path, "w", zipfile.ZIP_DEFLATED) as zipf: |
|
for file_path in files_to_zip: |
|
arcname = os.path.basename(file_path) |
|
zipf.write(file_path, arcname) |
|
|
|
return zip_path |
|
|
|
|
|
@spaces.GPU() |
|
def generate_video( |
|
rgb_video_path, |
|
hdmap_video_input, |
|
lidar_video_input, |
|
prompt, |
|
negative_prompt="The video captures a series of frames showing ugly scenes, static with no motion, motion blur, over-saturation, shaky footage, low resolution, grainy texture, pixelated images, poorly lit areas, underexposed and overexposed scenes, poor color balance, washed out colors, choppy sequences, jerky movements, low frame rate, artifacting, color banding, unnatural transitions, outdated special effects, fake elements, unconvincing visuals, poorly edited content, jump cuts, visual noise, and flickering. Overall, the video is of poor quality.", |
|
seed=42, |
|
randomize_seed=False, |
|
chunking=None, |
|
progress=gr.Progress(track_tqdm=True), |
|
): |
|
_dt = datetime.datetime.now(tz=datetime.timezone(datetime.timedelta(hours=8))).strftime("%Y-%m-%d_%H.%M.%S") |
|
logfile_path = os.path.join(LOG_DIR, f"{_dt}.log") |
|
log_handler = log.init_dev_loguru_file(logfile_path) |
|
|
|
if randomize_seed: |
|
actual_seed = random.randint(0, 1000000) |
|
else: |
|
actual_seed = seed |
|
|
|
log.info(f"actual_seed: {actual_seed}") |
|
|
|
if rgb_video_path is None or not os.path.isfile(rgb_video_path): |
|
log.warning(f"File `{rgb_video_path}` does not exist") |
|
rgb_video_path = "" |
|
|
|
|
|
start_time = time.time() |
|
|
|
|
|
args, control_inputs = parse_arguments( |
|
controlnet_specs_in={ |
|
"hdmap": {"control_weight": 0.3, "input_control": hdmap_video_input}, |
|
"lidar": {"control_weight": 0.7, "input_control": lidar_video_input}, |
|
}, |
|
input_video_path=rgb_video_path, |
|
checkpoint_dir=CHECKPOINTS_PATH, |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
sigma_max=80, |
|
offload_text_encoder_model=True, |
|
is_av_sample=True, |
|
num_gpus=1, |
|
seed=seed, |
|
) |
|
|
|
|
|
watcher = watch_gpu_memory(10, lambda x: log.debug(f"GPU memory usage: {x} (MiB)")) |
|
|
|
|
|
if chunking <= 0: |
|
chunking = None |
|
videos, prompts = inference(args, control_inputs, chunking) |
|
|
|
|
|
end_time = time.time() |
|
log.info(f"Time taken: {end_time - start_time} s") |
|
|
|
|
|
stop_watcher() |
|
|
|
video = videos[0] |
|
|
|
log.logger.remove(log_handler) |
|
return video, create_zip_for_download(filename=logfile_path, files_to_zip=[video, logfile_path]), actual_seed |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown( |
|
""" |
|
# Cosmos-Transfer1-7B-Sample-AV |
|
""" |
|
) |
|
with gr.Row(): |
|
with gr.Column(): |
|
rgb_video_input = gr.Video(label="Input RGB Video", format="mp4") |
|
hdmap_input = gr.Video(label="Input HD Map Video", format="mp4") |
|
lidar_input = gr.Video(label="Input LiDAR Video", format="mp4") |
|
|
|
prompt_input = gr.Textbox( |
|
label="Prompt", |
|
lines=5, |
|
|
|
value="The video is captured from a camera mounted on a car. The camera is facing forward. The video showcases a scenic golden-hour drive through a suburban area, bathed in the warm, golden hues of the setting sun. The dashboard camera captures the play of light and shadow as the sun’s rays filter through the trees, casting elongated patterns onto the road. The streetlights remain off, as the golden glow of the late afternoon sun provides ample illumination. The two-lane road appears to shimmer under the soft light, while the concrete barrier on the left side of the road reflects subtle warm tones. The stone wall on the right, adorned with lush greenery, stands out vibrantly under the golden light, with the palm trees swaying gently in the evening breeze. Several parked vehicles, including white sedans and vans, are seen on the left side of the road, their surfaces reflecting the amber hues of the sunset. The trees, now highlighted in a golden halo, cast intricate shadows onto the pavement. Further ahead, houses with red-tiled roofs glow warmly in the fading light, standing out against the sky, which transitions from deep orange to soft pastel blue. As the vehicle continues, a white sedan is seen driving in the same lane, while a black sedan and a white van move further ahead. The road markings are crisp, and the entire setting radiates a peaceful, almost cinematic beauty. The golden light, combined with the quiet suburban landscape, creates an atmosphere of tranquility and warmth, making for a mesmerizing and soothing drive.", |
|
placeholder="Enter your descriptive prompt here...", |
|
) |
|
|
|
negative_prompt_input = gr.Textbox( |
|
label="Negative Prompt", |
|
lines=3, |
|
|
|
value="The video captures a game playing, with bad crappy graphics and cartoonish frames. It represents a recording of old outdated games. The lighting looks very fake. The textures are very raw and basic. The geometries are very primitive. The images are very pixelated and of poor CG quality. There are many subtitles in the footage. Overall, the video is unrealistic at all.", |
|
placeholder="Enter what you DON'T want to see in the image...", |
|
) |
|
|
|
with gr.Row(): |
|
randomize_seed_checkbox = gr.Checkbox(label="Randomize Seed", value=False) |
|
seed_input = gr.Slider(minimum=0, maximum=1000000, value=1, step=1, label="Seed") |
|
|
|
chunking_input = gr.Slider(minimum=0, maximum=121, value=4, step=1, label="Chunking size") |
|
generate_button = gr.Button("Generate Image") |
|
|
|
with gr.Column(): |
|
output_video = gr.Video(label="Generated Video", format="mp4") |
|
output_file = gr.File(label="Download Results") |
|
|
|
generate_button.click( |
|
fn=generate_video, |
|
inputs=[ |
|
rgb_video_input, |
|
hdmap_input, |
|
lidar_input, |
|
prompt_input, |
|
negative_prompt_input, |
|
seed_input, |
|
randomize_seed_checkbox, |
|
chunking_input, |
|
], |
|
outputs=[output_video, output_file, seed_input], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|