harry900000's picture
add cosmos-tranfer1/ into repo
226c7c9
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import base64
import collections
import collections.abc
import functools
import json
import os
import random
import tempfile
import time
from contextlib import ContextDecorator
from typing import Any, Callable, List, Tuple, TypeVar
import cv2
import numpy as np
import termcolor
import torch
from torch.distributed._functional_collectives import AsyncCollectiveTensor
from torch.distributed._tensor.api import DTensor
from cosmos_transfer1.utils import distributed, log
def extract_video_frames(video_path, number_of_frames=2):
cap = cv2.VideoCapture(video_path)
frame_paths = []
temp_dir = tempfile.gettempdir()
for i in range(number_of_frames): # Extract first two frames
ret, frame = cap.read()
if not ret:
break # Stop if no more frames
temp_path = os.path.join(temp_dir, f"frame_{i+1}.png")
cv2.imwrite(temp_path, frame)
frame_paths.append(temp_path)
cap.release()
return frame_paths
def image_to_base64(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
def to(
data: Any,
device: str | torch.device | None = None,
dtype: torch.dtype | None = None,
memory_format: torch.memory_format = torch.preserve_format,
) -> Any:
"""Recursively cast data into the specified device, dtype, and/or memory_format.
The input data can be a tensor, a list of tensors, a dict of tensors.
See the documentation for torch.Tensor.to() for details.
Args:
data (Any): Input data.
device (str | torch.device): GPU device (default: None).
dtype (torch.dtype): data type (default: None).
memory_format (torch.memory_format): memory organization format (default: torch.preserve_format).
Returns:
data (Any): Data cast to the specified device, dtype, and/or memory_format.
"""
assert (
device is not None or dtype is not None or memory_format is not None
), "at least one of device, dtype, memory_format should be specified"
if isinstance(data, torch.Tensor):
is_cpu = (isinstance(device, str) and device == "cpu") or (
isinstance(device, torch.device) and device.type == "cpu"
)
data = data.to(
device=device,
dtype=dtype,
memory_format=memory_format,
non_blocking=(not is_cpu),
)
return data
elif isinstance(data, collections.abc.Mapping):
return type(data)({key: to(data[key], device=device, dtype=dtype, memory_format=memory_format) for key in data})
elif isinstance(data, collections.abc.Sequence) and not isinstance(data, (str, bytes)):
return type(data)([to(elem, device=device, dtype=dtype, memory_format=memory_format) for elem in data])
else:
return data
def get_local_tensor_if_DTensor(tensor: torch.Tensor | DTensor) -> torch.tensor:
if isinstance(tensor, DTensor):
local = tensor.to_local()
# As per PyTorch documentation, if the communication is not finished yet, we need to wait for it to finish
# https://pytorch.org/docs/stable/distributed.tensor.html#torch.distributed.tensor.DTensor.to_local
if isinstance(local, AsyncCollectiveTensor):
return local.wait()
else:
return local
return tensor
def serialize(data: Any) -> Any:
"""Serialize data by hierarchically traversing through iterables.
Args:
data (Any): Input data.
Returns:
data (Any): Serialized data.
"""
if isinstance(data, collections.abc.Mapping):
return type(data)({key: serialize(data[key]) for key in data})
elif isinstance(data, collections.abc.Sequence) and not isinstance(data, (str, bytes)):
return type(data)([serialize(elem) for elem in data])
else:
try:
json.dumps(data)
except TypeError:
data = str(data)
return data
def print_environ_variables(env_vars: list[str]) -> None:
"""Print a specific list of environment variables.
Args:
env_vars (list[str]): List of specified environment variables.
"""
for env_var in env_vars:
if env_var in os.environ:
log.info(f"Environment variable {Color.green(env_var)}: {Color.yellow(os.environ[env_var])}")
else:
log.warning(f"Environment variable {Color.green(env_var)} not set!")
def set_random_seed(seed: int, by_rank: bool = False) -> None:
"""Set random seed. This includes random, numpy, Pytorch.
Args:
seed (int): Random seed.
by_rank (bool): if true, each GPU will use a different random seed.
"""
if by_rank:
seed += distributed.get_rank()
log.info(f"Using random seed {seed}.")
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed) # sets seed on the current CPU & all GPUs
def arch_invariant_rand(
shape: List[int] | Tuple[int], dtype: torch.dtype, device: str | torch.device, seed: int | None = None
):
"""Produce a GPU-architecture-invariant randomized Torch tensor.
Args:
shape (list or tuple of ints): Output tensor shape.
dtype (torch.dtype): Output tensor type.
device (torch.device): Device holding the output.
seed (int): Optional randomization seed.
Returns:
tensor (torch.tensor): Randomly-generated tensor.
"""
# Create a random number generator, optionally seeded
rng = np.random.RandomState(seed)
# # Generate random numbers using the generator
random_array = rng.standard_normal(shape).astype(np.float32) # Use standard_normal for normal distribution
# Convert to torch tensor and return
return torch.from_numpy(random_array).to(dtype=dtype, device=device)
T = TypeVar("T", bound=Callable[..., Any])
class timer(ContextDecorator): # noqa: N801
"""Simple timer for timing the execution of code.
It can be used as either a context manager or a function decorator. The timing result will be logged upon exit.
Example:
def func_a():
time.sleep(1)
with timer("func_a"):
func_a()
@timer("func_b)
def func_b():
time.sleep(1)
func_b()
"""
def __init__(self, context: str, debug: bool = False):
self.context = context
self.debug = debug
def __enter__(self) -> None:
self.tic = time.time()
def __exit__(self, exc_type, exc_value, traceback) -> None: # noqa: ANN001
time_spent = time.time() - self.tic
if self.debug:
log.debug(f"Time spent on {self.context}: {time_spent:.4f} seconds")
else:
log.debug(f"Time spent on {self.context}: {time_spent:.4f} seconds")
def __call__(self, func: T) -> T:
@functools.wraps(func)
def wrapper(*args, **kwargs): # noqa: ANN202
tic = time.time()
result = func(*args, **kwargs)
time_spent = time.time() - tic
if self.debug:
log.debug(f"Time spent on {self.context}: {time_spent:.4f} seconds")
else:
log.debug(f"Time spent on {self.context}: {time_spent:.4f} seconds")
return result
return wrapper # type: ignore
class TrainingTimer:
"""Timer for timing the execution of code, aggregating over multiple training iterations.
It is used as a context manager to measure the execution time of code and store the timing results
for each function. The context managers can be nested.
Attributes:
results (dict): A dictionary to store timing results for various code.
Example:
timer = Timer()
for i in range(100):
with timer("func_a"):
func_a()
avg_time = sum(timer.results["func_a"]) / len(timer.results["func_a"])
print(f"func_a() took {avg_time} seconds.")
"""
def __init__(self) -> None:
self.results = dict()
self.average_results = dict()
self.start_time = []
self.func_stack = []
self.reset()
def reset(self) -> None:
self.results = {key: [] for key in self.results}
def __enter__(self) -> TrainingTimer:
self.start_time.append(time.time())
return self
def __exit__(self, exc_type, exc_value, traceback) -> None: # noqa: ANN001
end_time = time.time()
result = end_time - self.start_time.pop()
key = self.func_stack.pop()
self.results.setdefault(key, [])
self.results[key].append(result)
def __call__(self, func_name: str) -> TrainingTimer:
self.func_stack.append(func_name)
return self
def __getattr__(self, func_name: str) -> TrainingTimer:
return self.__call__(func_name)
def nested(self, func_name: str) -> TrainingTimer:
return self.__call__(func_name)
def compute_average_results(self) -> dict[str, float]:
results = dict()
for key, value_list in self.results.items():
results[key] = sum(value_list) / len(value_list)
return results
def timeout_handler(timeout_period: float, signum: int, frame: int) -> None:
# What to do when the process gets stuck. For now, we simply end the process.
error_message = f"Timeout error: more than {timeout_period} seconds passed since the last iteration."
raise TimeoutError(error_message)
class Color:
"""A convenience class to colorize strings in the console.
Example:
import
print("This is {Color.red('important')}.")
"""
@staticmethod
def red(x: str) -> str:
return termcolor.colored(str(x), color="red")
@staticmethod
def green(x: str) -> str:
return termcolor.colored(str(x), color="green")
@staticmethod
def cyan(x: str) -> str:
return termcolor.colored(str(x), color="cyan")
@staticmethod
def yellow(x: str) -> str:
return termcolor.colored(str(x), color="yellow")