Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from hydra.core.config_store import ConfigStore | |
from cosmos_predict1.tokenizer.training.configs.experiments.utils import create_debug_job_with_mock_data | |
from cosmos_predict1.utils import log | |
from cosmos_predict1.utils.lazy_config import LazyDict | |
# Post-training config for Cosmos-Tokenize1-CV8x8x8-720p-HDVILA | |
Cosmos_Tokenize1_CV8x8x8_720p_HDVILA: LazyDict = LazyDict( | |
dict( | |
defaults=[ | |
"/experiment/video_basic", | |
{"override /network": "continuous_factorized_video"}, | |
{"override /data_train": "hdvila_video720"}, | |
{"override /data_val": "hdvila_video720"}, | |
"_self_", | |
], | |
dataloader_train=dict( | |
dataset=dict( | |
crop_height=256, | |
num_video_frames=121, | |
), | |
batch_size=1, | |
), | |
dataloader_val=dict( | |
dataset=dict( | |
crop_height=256, | |
num_video_frames=121, | |
), | |
batch_size=1, | |
), | |
model=dict( | |
config=dict( | |
network=dict( | |
channels_mult=[2, 4, 4], | |
patch_size=4, | |
legacy_mode=False, | |
temporal_compression=8, | |
spatial_compression=8, | |
) | |
) | |
), | |
job=dict( | |
project="posttraining", | |
group="tokenizer", | |
name="Cosmos-Tokenize1-CV8x8x8-720p-HDVILA", | |
), | |
checkpoint=dict( | |
load_path="checkpoints/Cosmos-Tokenize1-CV8x8x8-720p/model.pt", | |
strict_resume=True, | |
load_training_state=True, | |
jit=dict(input_shape=[1, 3, 17, 512, 512]), | |
), | |
) | |
) | |
# Post-training config for Cosmos-Tokenize1-DV8x16x16-720p-HDVILA | |
Cosmos_Tokenize1_DV8x16x16_720p_HDVILA: LazyDict = LazyDict( | |
dict( | |
defaults=[ | |
"/experiment/video_basic", | |
{"override /network": "discrete_factorized_video"}, | |
{"override /data_train": "hdvila_video720"}, | |
{"override /data_val": "hdvila_video720"}, | |
"_self_", | |
], | |
dataloader_train=dict( | |
dataset=dict( | |
crop_height=256, | |
num_video_frames=49, | |
), | |
batch_size=1, | |
), | |
dataloader_val=dict( | |
dataset=dict( | |
crop_height=256, | |
num_video_frames=49, | |
), | |
batch_size=1, | |
), | |
model=dict( | |
config=dict( | |
network=dict( | |
persistent_quantizer=False, | |
z_channels=16, | |
channels_mult=[2, 4, 4], | |
patch_size=4, | |
legacy_mode=False, | |
temporal_compression=8, | |
spatial_compression=16, | |
) | |
) | |
), | |
job=dict( | |
project="posttraining", | |
group="tokenizer", | |
name="Cosmos-Tokenize1-DV8x16x16-720p-HDVILA", | |
), | |
checkpoint=dict( | |
load_path="checkpoints/Cosmos-Tokenize1-DV8x16x16-720p/model.pt", | |
strict_resume=True, | |
load_training_state=True, | |
jit=dict(input_shape=[1, 3, 17, 512, 512]), | |
), | |
) | |
) | |
# Post-training config for Cosmos-Tokenize1-CV4x8x8-360p-HDVILA | |
Cosmos_Tokenize1_CV4x8x8_360p_HDVILA: LazyDict = LazyDict( | |
dict( | |
defaults=[ | |
"/experiment/video_basic", | |
{"override /network": "continuous_factorized_video"}, | |
{"override /data_train": "hdvila_video360"}, | |
{"override /data_val": "hdvila_video360"}, | |
"_self_", | |
], | |
dataloader_train=dict( | |
dataset=dict( | |
crop_height=256, | |
num_video_frames=49, | |
), | |
batch_size=1, | |
), | |
dataloader_val=dict( | |
dataset=dict( | |
crop_height=256, | |
num_video_frames=49, | |
), | |
batch_size=1, | |
), | |
model=dict( | |
config=dict( | |
network=dict( | |
channels_mult=[2, 4, 4], | |
patch_size=2, | |
legacy_mode=False, | |
temporal_compression=4, | |
spatial_compression=8, | |
) | |
) | |
), | |
job=dict( | |
project="posttraining", | |
group="tokenizer", | |
name="Cosmos-Tokenize1-CV4x8x8-360p-HDVILA", | |
), | |
checkpoint=dict( | |
load_path="checkpoints/Cosmos-Tokenize1-CV4x8x8-360p/model.pt", | |
strict_resume=True, | |
load_training_state=True, | |
jit=dict(input_shape=[1, 3, 17, 512, 512]), | |
), | |
) | |
) | |
# Post-training config for Cosmos-Tokenize1-DV4x8x8-360p-HDVILA | |
Cosmos_Tokenize1_DV4x8x8_360p_HDVILA: LazyDict = LazyDict( | |
dict( | |
defaults=[ | |
"/experiment/video_basic", | |
{"override /network": "discrete_factorized_video"}, | |
{"override /data_train": "hdvila_video360"}, | |
{"override /data_val": "hdvila_video360"}, | |
"_self_", | |
], | |
dataloader_train=dict( | |
dataset=dict( | |
crop_height=256, | |
num_video_frames=49, | |
), | |
batch_size=1, | |
), | |
dataloader_val=dict( | |
dataset=dict( | |
crop_height=256, | |
num_video_frames=49, | |
), | |
batch_size=1, | |
), | |
model=dict( | |
config=dict( | |
network=dict( | |
persistent_quantizer=False, | |
z_channels=256, | |
channels_mult=[2, 4, 4], | |
patch_size=2, | |
legacy_mode=False, | |
temporal_compression=4, | |
spatial_compression=8, | |
) | |
) | |
), | |
job=dict( | |
project="posttraining", | |
group="tokenizer", | |
name="Cosmos-Tokenize1-DV4x8x8-360p-HDVILA", | |
), | |
checkpoint=dict( | |
load_path="checkpoints/Cosmos-Tokenize1-DV4x8x8-360p/model.pt", | |
strict_resume=True, | |
load_training_state=True, | |
jit=dict(input_shape=[1, 3, 17, 512, 512]), | |
), | |
) | |
) | |
cs = ConfigStore.instance() | |
for _item in [ | |
Cosmos_Tokenize1_CV8x8x8_720p_HDVILA, | |
Cosmos_Tokenize1_DV8x16x16_720p_HDVILA, | |
Cosmos_Tokenize1_CV4x8x8_360p_HDVILA, | |
Cosmos_Tokenize1_DV4x8x8_360p_HDVILA, | |
]: | |
experiment_name = [name for name, value in globals().items() if value is _item][0] | |
log.info(f"Registering experiment: {experiment_name}") | |
cs.store( | |
group="experiment", | |
package="_global_", | |
name=experiment_name, | |
node=_item, | |
) | |
mock_experiment = f"mock_{experiment_name}" | |
log.info(f"Registering mock experiment: {mock_experiment}") | |
_debug_item = create_debug_job_with_mock_data(_item["job"]["name"]) | |
cs.store( | |
group="experiment", | |
package="_global_", | |
name=mock_experiment, | |
node=_debug_item, | |
) | |