elungky's picture
Initial commit for new Space - pre-built Docker image
28451f7
/*
* Copyright (c) 2020-2022, NVIDIA CORPORATION. All rights reserved.
*
* NVIDIA CORPORATION and its licensors retain all intellectual property
* and proprietary rights in and to this software, related documentation
* and any modifications thereto. Any use, reproduction, disclosure or
* distribution of this software and related documentation without an express
* license agreement from NVIDIA CORPORATION is strictly prohibited.
*/
/** @file pybind11_vec.cuh
* @author Thomas Müller, NVIDIA
* @brief pybind11 bindings for NGP's vector and matrix types. Adapted from
* Patrik Huber's glm binding code per the BSD license of pybind11.
*/
#pragma once
#include <neural-graphics-primitives/vec.h>
#include <cstddef>
#include <pybind11/numpy.h>
#if defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable: 4127) // warning C4127: Conditional expression is constant
#endif
NAMESPACE_BEGIN(pybind11)
NAMESPACE_BEGIN(detail)
/**
* @file utils/pybind11_glm.hpp
* @brief Transparent conversion to and from Python for glm vector and matrix types.
*
* All converters for matrices assume col-major storage of glm, the default.
* Things will likely break if non-default storage order is used.
*/
template <typename T, uint32_t N>
struct type_caster<ngp::tvec<T, N>> {
using vector_type = ngp::tvec<T, N>;
using Scalar = T;
static constexpr std::size_t num_elements = N;
bool load(handle src, bool)
{
array_t<Scalar> buf(src, true);
if (!buf.check())
return false;
if (buf.ndim() == 1) // a 1-dimensional vector
{
if (buf.shape(0) != num_elements) {
return false; // not a 2-elements vector
}
if (buf.strides(0) != sizeof(Scalar))
{
std::cout << "An array with non-standard strides is given. Please pass a contiguous array." << std::endl;
return false;
}
value = vector_type(buf.mutable_data()); // make_vec* copies the data (unnecessarily)
}
else { // buf.ndim() != 1
return false;
}
return true;
}
static handle cast(const vector_type& src, return_value_policy /* policy */, handle /* parent */)
{
return array(
num_elements, // shape
src.data() // data
).release();
}
// Specifies the doc-string for the type in Python:
PYBIND11_TYPE_CASTER(vector_type, _("vec"));
};
template <typename T, uint32_t N, uint32_t M>
struct type_caster<ngp::tmat<T, N, M>> {
using matrix_type = ngp::tmat<T, N, M>;
using Scalar = T;
static constexpr std::size_t num_rows = M;
static constexpr std::size_t num_cols = N;
bool load(handle src, bool)
{
array_t<Scalar> buf(src, true);
if (!buf.check())
return false;
if (buf.ndim() == 2) // a 2-dimensional matrix
{
if (buf.shape(0) != num_rows || buf.shape(1) != num_cols) {
return false; // not a 4x4 matrix
}
if (buf.strides(0) / sizeof(Scalar) != num_cols || buf.strides(1) != sizeof(Scalar))
{
std::cout << "An array with non-standard strides is given. Please pass a contiguous array." << std::endl;
return false;
}
// What we get from Python is laid out in row-major memory order, while GLM's
// storage is col-major, thus, we transpose.
value = ngp::transpose(matrix_type(buf.mutable_data())); // make_mat*() copies the data (unnecessarily)
}
else { // buf.ndim() != 2
return false;
}
return true;
}
static handle cast(const matrix_type& src, return_value_policy /* policy */, handle /* parent */)
{
return array(
{ num_rows, num_cols }, // shape
{ sizeof(Scalar), sizeof(Scalar) * num_rows }, // strides - flip the row/col layout!
src.data() // data
).release();
}
// Specifies the doc-string for the type in Python:
PYBIND11_TYPE_CASTER(matrix_type, _("mat"));
};
NAMESPACE_END(detail)
NAMESPACE_END(pybind11)
#if defined(_MSC_VER)
#pragma warning(pop)
#endif