Spaces:
Build error
Build error
/* | |
* SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
* SPDX-License-Identifier: Apache-2.0 | |
* | |
* Licensed under the Apache License, Version 2.0 (the "License"); | |
* you may not use this file except in compliance with the License. | |
* You may obtain a copy of the License at | |
* | |
* http://www.apache.org/licenses/LICENSE-2.0 | |
* | |
* Unless required by applicable law or agreed to in writing, software | |
* distributed under the License is distributed on an "AS IS" BASIS, | |
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
* See the License for the specific language governing permissions and | |
* limitations under the License. | |
*/ | |
/** @file vec_pybind11.h | |
* @author Thomas Müller, NVIDIA | |
* @brief pybind11 bindings for NGP's vector and matrix types. Adapted from | |
* Patrik Huber's glm binding code per the BSD license of pybind11. | |
*/ | |
namespace pybind11 { | |
namespace detail { | |
template <typename T, uint32_t N> | |
struct type_caster<tcnn::tvec<T, N>> { | |
using vector_type = tcnn::tvec<T, N>; | |
using Scalar = T; | |
static constexpr std::size_t num_elements = N; | |
bool load(handle src, bool) { | |
auto buf = array_t<Scalar>::ensure(src); | |
if (!buf) { | |
return false; | |
} | |
if (buf.ndim() != 1) { | |
return false; // not a rank-1 tensor (i.e. vector) | |
} | |
if (buf.shape(0) != num_elements) { | |
return false; // not a 2-elements vector | |
} | |
for (size_t i = 0; i < num_elements; ++i) { | |
value[i] = *buf.data(i); | |
} | |
return true; | |
} | |
static handle cast(const vector_type& src, return_value_policy, handle) { | |
return array( | |
num_elements, | |
src.data() | |
).release(); | |
} | |
// Specifies the doc-string for the type in Python: | |
PYBIND11_TYPE_CASTER(vector_type, _("vec")); | |
}; | |
template <typename T, uint32_t N, uint32_t M> | |
struct type_caster<tcnn::tmat<T, N, M>> { | |
using matrix_type = tcnn::tmat<T, N, M>; | |
using Scalar = T; | |
static constexpr std::size_t num_rows = M; | |
static constexpr std::size_t num_cols = N; | |
bool load(handle src, bool) { | |
auto buf = array_t<Scalar>::ensure(src); | |
if (!buf) { | |
return false; | |
} | |
if (buf.ndim() != 2) { | |
return false; // not a rank-2 tensor (i.e. matrix) | |
} | |
if (buf.shape(0) != num_rows || buf.shape(1) != num_cols) { | |
return false; // not a 4x4 matrix | |
} | |
for (size_t i = 0; i < num_cols; ++i) { | |
for (size_t j = 0; j < num_rows; ++j) { | |
value[i][j] = *buf.data(j, i); | |
} | |
} | |
return true; | |
} | |
static handle cast(const matrix_type& src, return_value_policy, handle) { | |
return array( | |
{ num_rows, num_cols }, | |
{ sizeof(Scalar), sizeof(Scalar) * num_rows }, // strides - flip the row/col layout! | |
src.data() | |
).release(); | |
} | |
// Specifies the doc-string for the type in Python: | |
PYBIND11_TYPE_CASTER(matrix_type, _("mat")); | |
}; | |
} | |
} | |