AITOOL / Readme.md
NandanData's picture
Upload 54 files
ab3b796 verified
๐Ÿš€ Comprehensive Strategy for Building an AI Tools Platform with Ad-Based Monetization (AWS Focused for 1 Lakh DAUs)
๐Ÿ” Vision
Build a low-cost yet scalable AI tools platform where users can access various AI services (text, image, audio, etc.) by watching ads. Each tool will have dynamic credit allocation โ€” text tools (1 min ad), image tools (2 min ad), etc.
๐Ÿ“ Architecture Blueprint
A robust, scalable, and cost-effective architecture will ensure smooth performance for 1 lakh DAUs.
๐Ÿงฉ Key Components
Frontend: Html/css/js
Backend: FastAPI / Flask (for managing AI tool requests)
AI Models: Hugging Face, DeepSeek, OpenRouter, etc.
Database: DynamoDB / PostgreSQL (low latency, scalable)
Cache Layer: Redis / ElastiCache (to reduce API costs)
Ad System: Google AdSense, AdMob, or Revcontent
Deployment & Scaling: AWS ECS + Fargate (serverless scaling)
CDN for Speed: Cloudflare (faster static content delivery)
Authentication: AWS Cognito / Auth0 for secure logins
๐Ÿ—๏ธ System Design Flow
โœ… Step 1: User visits the platform and selects an AI tool.
โœ… Step 2: Platform verifies user's credit balance.
๐Ÿ”ธ If sufficient credits โ†’ Access tool directly.
๐Ÿ”ธ If insufficient credits โ†’ Show an ad to earn credits.
โœ… Step 3: Credits are dynamically assigned based on the tool:
๐Ÿ”น Text Models: 1 Min Ad โ†’ +5 Credits
๐Ÿ”น Image Models: 2 Min Ad โ†’ +10 Credits
User custom Promts by user where user edit the make their own uses and user who created gets cut for promts 2% of model model tool creadit
โœ… Step 4: User request is processed via FastAPI backend.
โœ… Step 5: AI Model API is triggered (DeepSeek, Mistral, OpenRouter, etc.)
โœ… Step 6: Result is stored in DynamoDB and cached via Redis for repeat queries.
Tool Type Ad Watch Time Credits Earned Estimated Cost Per Request
Text Models 1 Minute Ad +5 Credits โ‚น0.01 - โ‚น0.05 per request
Image Models 2 Minute Ad +10 Credits โ‚น0.10 - โ‚น0.50 per request
Video Models 3 Minute Ad +15 Credits โ‚น0.50 - โ‚น1.00 per request
โš™๏ธ Technical Stack (Optimized for AWS and Cost Efficiency)
Component Recommended Solution
Frontend Streamlit + React (for hybrid UI needs)
Backend FastAPI (best for speed & scalability)
AI Model Hosting AWS Lambda (for lightweight AI models)
AI Model APIs Hugging Face / DeepSeek API
Database DynamoDB (serverless, scalable)
Cache Redis (ElastiCache for low latency)
Ad System Google AdSense / AdMob
Deployment AWS ECS (with Fargate for auto-scaling)
CDN Cloudflare (for global content delivery)
Auth AWS Cognito (scalable user management)
๐Ÿ’ฐ Cost Optimization Plan for 1 Lakh DAUs
Component Estimated Cost (โ‚น/month) Optimization Strategy
AWS ECS + Fargate โ‚น18,000 - โ‚น25,000 Efficient container scaling
DynamoDB (Database) โ‚น5,000 - โ‚น7,000 Use on-demand mode
Redis (ElastiCache) โ‚น3,000 - โ‚น5,000 Cache frequently accessed data
AI Model API Usage โ‚น20,000 - โ‚น40,000 Optimize prompt structure
Cloudflare (CDN) โ‚น5,000 - โ‚น8,000 Leverage caching for static files
Google AdSense Revenue โ‚น1,20,000 - โ‚น1,80,000 Based on ad engagement (30% conversion)
โœ… Projected Net Profit Estimate: โ‚น60,000 - โ‚น1,00,000 (assuming 40% user engagement)
๐Ÿงฎ Credit System with Dynamic Scaling
Tool Type Ad Watch Time Credits Earned Estimated Cost Per Request
Text Models 1 Minute Ad +5 Credits โ‚น0.01 - โ‚น0.05 per request
Image Models 2 Minute Ad +10 Credits โ‚น0.10 - โ‚น0.50 per request
Video Models 3 Minute Ad +15 Credits โ‚น0.50 - โ‚น1.00 per request
โœ… Logic: Higher resource-intensive models require longer ad watch times.
๐Ÿ“‹ Project Structure (Best Practices)
/app
โ”œโ”€โ”€ /frontend
โ”‚ โ”œโ”€โ”€ main.py
โ”‚ โ”œโ”€โ”€ pages/
โ”‚ โ”œโ”€โ”€ components/
| UI/
โ”œโ”€โ”€ /backend
โ”‚ โ”œโ”€โ”€ api.py
โ”‚ โ”œโ”€โ”€ credit_manager.py
โ”‚ โ”œโ”€โ”€ ad_manager.py
โ”‚ โ””โ”€โ”€ ai_service.py
โ”œโ”€โ”€ /database
โ”‚ โ”œโ”€โ”€ db_connector.py
โ”‚ โ””โ”€โ”€ credit_tracker.py
โ”œโ”€โ”€ /models
โ”‚ โ”œโ”€โ”€ text_gen_model.py
โ”‚ โ”œโ”€โ”€ image_gen_model.py
โ”‚ โ””โ”€โ”€ video_gen_model.py
โ”œโ”€โ”€ Dockerfile
โ”œโ”€โ”€ requirements.txt
โ”œโ”€โ”€ .env
โ””โ”€โ”€ config.yaml
๐Ÿ” Security Best Practices
โœ… AWS Cognito for user authentication.
โœ… IAM Role Management to control resource access.
โœ… Use CloudWatch for monitoring performance and security threats.
โœ… Implement Rate Limiting for API abuse prevention.
โœ… Set SSL/TLS encryption for secure data transmission.
๐Ÿ“ˆ Scaling Strategy for 1 Lakh DAUs
โœ… ECS Auto-Scaling Policies: Use CPU & Memory-based scaling triggers.
โœ… DynamoDB Auto-Scaling: Set capacity limits with automatic scale-up.
โœ… Implement Cloudflare CDN for fast content delivery.
โœ… Optimize API requests using batch processing to minimize load.
โœ… Use Lambda Edge for regional content caching.
๐Ÿ”Š Ad Revenue Optimization Strategy
โœ… Use Google AdSense Video Ads for high-payout ads.
โœ… Add Interactive Ads to boost engagement.
โœ… Introduce Rewarded Ads (watch longer ads for bonus credits).
โœ… Implement a Referral System to increase user retention.
โœ… Step-by-Step Development Plan
1๏ธโƒฃ Create Streamlit Frontend โ†’ Design dynamic UI with credit-based access.
2๏ธโƒฃ Build Backend (FastAPI/Flask) โ†’ Integrate AI model APIs with token logic.
3๏ธโƒฃ Set Up Ad Management System โ†’ Implement Google AdSense/AdMob integration.
4๏ธโƒฃ Implement Credit-Based Workflow โ†’ Map credit logic to ad-watch duration.
5๏ธโƒฃ Optimize AI Model Costs โ†’ Use caching (Redis) to reduce redundant calls.
6๏ธโƒฃ Deploy on AWS ECS + Fargate โ†’ Set up auto-scaling for cost control.
7๏ธโƒฃ Add Analytics โ†’ Track user behavior, ad conversion, and credit consumption.
๐ŸŽฏ Bonus Features for Maximum Engagement
โœ… Leaderboard System: Users earn bonus credits by inviting friends.
โœ… Daily Login Rewards: Encourage repeat visits with small bonuses.
โœ… Premium Subscription Model: Offer ad-free premium access with special tools.
โœ… Limited-Time Offers: Drive engagement with exclusive tool unlocks.
# MegicAI Platform
Multi-provider AI platform with credit system and ad-based monetization.
## Features
- **Multiple AI Providers**: Support for OpenAI, Hugging Face, and OpenRouter
- **Fallback Mechanism**: Automatically switches to available providers if one fails
- **Credit System**: Users earn credits by watching ads
- **Modern UI**: Professional interface with animations and responsive design
- **Tool Selection**: Various AI tools for different use cases (text, image, video, etc.)
- **Model Selection**: Choose specific AI provider for each request
## Quick Start
### Prerequisites
- Python 3.8+
- Redis server (for caching)
### Installation
1. Clone the repository:
```
git clone https://github.com/yourusername/megicai.git
cd megicai
```
2. Install dependencies:
```
pip install -r requirements.txt
```
3. Start the application (both backend and frontend):
```
python start.py
```
4. Access the application:
- Frontend: http://localhost:8501
- Backend API: http://localhost:8000
## Development Setup
1. Install development dependencies:
```
pip install -r requirements-dev.txt
```
2. Run backend server only:
```
python backend/run_server.py backend.api_minimal
```
3. Run frontend only:
```
streamlit run frontend/main.py
```
## Production Deployment
### Docker Deployment
1. Build the Docker image:
```
docker build -t megicai:latest .
```
2. Run with Docker Compose:
```
docker-compose up -d
```
### AWS Deployment
1. Set up the required AWS resources:
- ECS cluster for containerized deployment
- ElastiCache (Redis) for caching
- DynamoDB for user data and credits
- Cognito for authentication
2. Configure environment variables in AWS Parameter Store or Secrets Manager.
3. Deploy using the AWS CDK or CloudFormation template in the `deployment` directory.
## Configuration
Edit `config.yaml` to configure:
- AI provider API keys
- Redis connection details
- Credit system parameters
## License
MIT