|
import yfinance as yf
|
|
import pandas as pd
|
|
import streamlit as st
|
|
from datetime import datetime, timedelta
|
|
|
|
|
|
def fetch_nifty50_tickers():
|
|
return [
|
|
"TATAMOTORS.NS", "RELIANCE.NS", "INFY.NS", "HDFCBANK.NS", "ICICIBANK.NS",
|
|
"SBIN.NS", "ITC.NS", "AXISBANK.NS", "MARUTI.NS", "TATASTEEL.NS",
|
|
"WIPRO.NS", "SUNPHARMA.NS", "HINDALCO.NS", "HCLTECH.NS", "NTPC.NS",
|
|
"L&T.NS", "M&M.NS", "ONGC.NS", "HDFCLIFE.NS", "ULTRACEMCO.NS",
|
|
"ADANIGREEN.NS", "BHARTIARTL.NS", "BAJAJFINSV.NS", "JSWSTEEL.NS", "DIVISLAB.NS",
|
|
"POWERGRID.NS", "KOTAKBANK.NS", "HINDUNILVR.NS", "TCS.NS", "CIPLA.NS",
|
|
"ASIANPAINT.NS", "GRASIM.NS", "BRITANNIA.NS", "SHREECEM.NS",
|
|
"TECHM.NS", "INDUSINDBK.NS", "EICHERMOT.NS", "COALINDIA.NS", "GAIL.NS",
|
|
"BOSCHLTD.NS", "M&MFIN.NS", "IDFCFIRSTB.NS", "HAVELLS.NS"
|
|
]
|
|
|
|
|
|
def fetch_large_cap_tickers():
|
|
return fetch_nifty50_tickers()
|
|
|
|
|
|
def fetch_small_cap_tickers():
|
|
return [
|
|
"ALOKINDS.NS", "ADANIENT.NS", "AARTIIND.NS", "AVANTIFEED.NS", "BLS.IN",
|
|
"BHEL.NS", "BIRLACORP.NS", "CARBORUNIV.NS", "CENTRALBANK.NS", "EMAMILTD.NS",
|
|
"FDC.NS", "GLAXO.NS", "GODFRYPHLP.NS", "GSKCONS.NS", "HAVELLS.NS",
|
|
"HEMIPAPER.NS", "HIL.NS", "JINDALSAW.NS", "JUBLFOOD.NS", "KOTAKMAH.NS",
|
|
"MSTCLAS.NS", "NCC.NS", "PAGEIND.NS", "PIIND.NS", "SBI.CN",
|
|
"SISL.NS", "SOMANYCERA.NS", "STAR.NS", "SUNDARAM.NS", "TATAINVEST.NS",
|
|
"VSTIND.NS", "WABCOINDIA.NS", "WELCORP.NS", "ZEELEARN.NS", "ZOMATO.NS"
|
|
]
|
|
|
|
|
|
def get_top_movers(tickers, days=1):
|
|
end_date = datetime.now()
|
|
start_date = end_date - timedelta(days=days)
|
|
|
|
data = {}
|
|
for ticker in tickers:
|
|
try:
|
|
df = yf.download(ticker, start=start_date, end=end_date)
|
|
if not df.empty and 'Close' in df.columns:
|
|
df['Ticker'] = ticker
|
|
data[ticker] = df['Close'].pct_change().iloc[-1]
|
|
except Exception as e:
|
|
st.error(f"Error fetching data for {ticker}: {e}")
|
|
|
|
sorted_data = sorted(data.items(), key=lambda x: x[1], reverse=True)
|
|
top_gainers = sorted_data[:10]
|
|
top_losers = sorted_data[-10:]
|
|
|
|
return top_gainers, top_losers
|
|
|
|
|
|
def format_df(df):
|
|
if not df.empty:
|
|
df['Percentage Change'] = pd.to_numeric(df['Percentage Change'], errors='coerce')
|
|
return df.style.applymap(lambda x: 'color: green' if x > 0 else 'color: red', subset=['Percentage Change'])
|
|
return df
|
|
|
|
|
|
def display_dashboard():
|
|
st.header("Dashboard")
|
|
|
|
|
|
nifty50_tickers = fetch_nifty50_tickers()
|
|
large_cap_tickers = fetch_large_cap_tickers()
|
|
small_cap_tickers = fetch_small_cap_tickers()
|
|
|
|
|
|
top_gainers_nifty50, top_losers_nifty50 = get_top_movers(nifty50_tickers)
|
|
top_gainers_large_cap, top_losers_large_cap = get_top_movers(large_cap_tickers)
|
|
top_gainers_small_cap, top_losers_small_cap = get_top_movers(small_cap_tickers)
|
|
|
|
|
|
col1, col2, col3, col4 = st.columns(4)
|
|
|
|
with col1:
|
|
st.write("### Nifty 50 Top Gainers")
|
|
if top_gainers_nifty50:
|
|
df_gainers_nifty50 = pd.DataFrame(top_gainers_nifty50, columns=['Ticker', 'Percentage Change'])
|
|
st.dataframe(format_df(df_gainers_nifty50))
|
|
|
|
with col2:
|
|
st.write("### Nifty 50 Top Losers")
|
|
if top_losers_nifty50:
|
|
df_losers_nifty50 = pd.DataFrame(top_losers_nifty50, columns=['Ticker', 'Percentage Change'])
|
|
st.dataframe(format_df(df_losers_nifty50))
|
|
|
|
with col3:
|
|
st.write("### Large Cap Top Gainers")
|
|
if top_gainers_large_cap:
|
|
df_gainers_large_cap = pd.DataFrame(top_gainers_large_cap, columns=['Ticker', 'Percentage Change'])
|
|
st.dataframe(format_df(df_gainers_large_cap))
|
|
|
|
with col4:
|
|
st.write("### Large Cap Top Losers")
|
|
if top_losers_large_cap:
|
|
df_losers_large_cap = pd.DataFrame(top_losers_large_cap, columns=['Ticker', 'Percentage Change'])
|
|
st.dataframe(format_df(df_losers_large_cap))
|
|
|
|
|
|
def fetch_stock_profile(ticker):
|
|
try:
|
|
stock = yf.Ticker(ticker)
|
|
info = stock.info
|
|
|
|
profile = {
|
|
"Name": info.get('shortName', 'N/A'),
|
|
"Current Price": f"₹ {info.get('currentPrice', 'N/A')}",
|
|
"Market Cap": f"₹ {info.get('marketCap', 'N/A') / 1e7:.2f} Cr.",
|
|
"P/E Ratio": info.get('forwardEps', 'N/A'),
|
|
"Book Value": info.get('bookValue', 'N/A'),
|
|
"Dividend Yield": info.get('dividendYield', 'N/A'),
|
|
"ROCE": info.get('returnOnCapitalEmployed', 'N/A'),
|
|
"ROE": info.get('returnOnEquity', 'N/A'),
|
|
"Face Value": info.get('faceValue', 'N/A')
|
|
}
|
|
return profile
|
|
except Exception as e:
|
|
st.error(f"Error fetching profile for {ticker}: {e}")
|
|
return {}
|
|
|
|
|
|
|
|
|
|
|
|
def display_profile(profile):
|
|
st.subheader("Stock Profile")
|
|
profile_df = pd.DataFrame([profile])
|
|
st.table(profile_df)
|
|
|
|
|
|
def display_quarterly_results(ticker):
|
|
st.subheader("Quarterly Results Summary")
|
|
try:
|
|
stock = yf.Ticker(ticker)
|
|
financials = stock.quarterly_financials.T
|
|
if not financials.empty:
|
|
results = {
|
|
'Sales': financials['Total Revenue'].iloc[-1] if 'Total Revenue' in financials.columns else 'N/A',
|
|
'Operating Profit Margin': financials['Operating Income'].iloc[-1] if 'Operating Income' in financials.columns else 'N/A',
|
|
'Net Profit': financials['Net Income'].iloc[-1] if 'Net Income' in financials.columns else 'N/A'
|
|
}
|
|
results_df = pd.DataFrame([results])
|
|
st.table(results_df)
|
|
else:
|
|
st.write("No quarterly results available.")
|
|
except Exception as e:
|
|
st.write(f"Error fetching quarterly results: {e}")
|
|
|
|
|
|
def display_shareholding_pattern(ticker):
|
|
st.subheader("Shareholding Pattern")
|
|
|
|
|
|
data = {
|
|
'Category': ['Promoters', 'FIIs (Foreign Institutional Investors)', 'DIIs (Domestic Institutional Investors)', 'Public'],
|
|
'Holding (%)': [45.0, 20.0, 15.0, 20.0]
|
|
}
|
|
|
|
df = pd.DataFrame(data)
|
|
st.table(df)
|
|
|
|
|
|
def display_financial_ratios(ticker):
|
|
st.subheader("Financial Ratios")
|
|
stock = yf.Ticker(ticker)
|
|
|
|
try:
|
|
|
|
ratios = {
|
|
'Debtor Days': 73,
|
|
'Working Capital Days': 194,
|
|
'Cash Conversion Cycle': 51
|
|
}
|
|
ratios_df = pd.DataFrame([ratios])
|
|
st.table(ratios_df)
|
|
except Exception as e:
|
|
st.write("Error fetching financial ratios:", e)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|