Naz786 commited on
Commit
22a5a1b
ยท
verified ยท
1 Parent(s): 9b13ff2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +296 -346
app.py CHANGED
@@ -1,119 +1,148 @@
1
- import difflib
2
  import streamlit as st
3
- from groq import Groq
4
  import os
 
 
 
5
 
6
- # --- Set page config FIRST! ---
7
- st.set_page_config(page_title="AI Code Assistant", layout="wide")
8
-
9
- # --- Custom CSS for Professional Look ---
10
- st.markdown("""
11
- <style>
12
- @import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;600&display=swap');
13
- html, body, [class*="css"] {
14
- font-family: 'Inter', sans-serif;
15
- background-color: #f7f9fb;
16
- }
17
- .stApp {
18
- background-color: #f7f9fb;
19
- }
20
- .stSidebar {
21
- background-color: #22304a !important;
22
- }
23
- .stButton>button {
24
- background-color: #22304a;
25
- color: #fff;
26
- border-radius: 6px;
27
- border: none;
28
- font-weight: 600;
29
- padding: 0.5rem 1.5rem;
30
- margin-top: 0.5rem;
31
- margin-bottom: 0.5rem;
32
- transition: background 0.2s;
33
- }
34
- .stButton>button:hover {
35
- background-color: #1a2333;
36
- color: #fff;
37
- }
38
- .stTextInput>div>div>input, .stTextArea>div>textarea {
39
- background: #fff;
40
- border: 1px solid #d1d5db;
41
- border-radius: 6px;
42
- color: #22304a;
43
- font-size: 1rem;
44
- }
45
- .stDownloadButton>button {
46
- background-color: #22304a;
47
- color: #fff;
48
- border-radius: 6px;
49
- border: none;
50
- font-weight: 600;
51
- padding: 0.5rem 1.5rem;
52
- margin-top: 0.5rem;
53
- margin-bottom: 0.5rem;
54
- transition: background 0.2s;
55
- }
56
- .stDownloadButton>button:hover {
57
- background-color: #1a2333;
58
- color: #fff;
59
- }
60
- .stExpanderHeader {
61
- font-weight: 600;
62
- color: #22304a;
63
- font-size: 1.1rem;
64
- }
65
- .stMarkdown {
66
- color: #22304a;
67
- }
68
- .stAlert {
69
- border-radius: 6px;
70
- }
71
- </style>
72
- """, unsafe_allow_html=True)
73
 
74
  # --- Groq API Setup ---
75
  GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
76
  if not GROQ_API_KEY:
77
- st.error("GROQ_API_KEY environment variable not set. Please set it in your Hugging Face Space secrets.")
78
  st.stop()
79
  client = Groq(api_key=GROQ_API_KEY)
80
 
81
- # --- Blackbox AI Agent Setup ---
82
- BLACKBOX_API_KEY = os.environ.get("BLACKBOX_API_KEY")
83
- if not BLACKBOX_API_KEY:
84
- st.error("BLACKBOX_API_KEY environment variable not set. Please set it in your Hugging Face Space secrets.")
85
- st.stop()
86
-
87
- # Chat history management
88
- if "chat_history" not in st.session_state:
89
- st.session_state.chat_history = []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
 
91
- def groq_api_call(prompt):
92
- chat_completion = client.chat.completions.create(
93
  messages=[{"role": "user", "content": prompt}],
94
  model="llama3-70b-8192",
95
  )
96
- return chat_completion.choices[0].message.content
97
-
98
- def blackbox_ai_call(messages):
99
- # This is a placeholder for actual Blackbox AI API call using BLACKBOX_API_KEY
100
- # For demonstration, we simulate a response by echoing last user message
101
- last_user_message = messages[-1]["content"] if messages else ""
102
- response = f"Blackbox AI response to: {last_user_message}"
103
- return response
104
-
105
- def get_diff_html(original, modified):
106
- original_lines = original.splitlines()
107
- modified_lines = modified.splitlines()
108
- differ = difflib.HtmlDiff(tabsize=4, wrapcolumn=80)
109
- return differ.make_table(original_lines, modified_lines, "Original", "Modified", context=True, numlines=2)
 
 
 
 
 
 
110
 
111
- def code_complexity(code):
112
- lines = code.count('\n') + 1
113
- functions = code.count('def ')
114
- classes = code.count('class ')
115
- comments = code.count('#')
116
- return f"Lines: {lines}, Functions: {functions}, Classes: {classes}, Comments: {comments}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117
 
118
  def detect_code_type(code, programming_language):
119
  backend_keywords = [
@@ -143,258 +172,179 @@ def detect_code_type(code, programming_language):
143
  return 'frontend'
144
  return 'unknown'
145
 
 
 
 
 
 
 
 
146
  def code_matches_language(code: str, language: str) -> bool:
147
- code = code.strip().lower()
148
- if language.lower() == "python":
149
- return "def " in code or "import " in code or ".py" in code
150
- if language.lower() == "c++":
151
- return "#include" in code or "int main" in code or ".cpp" in code or "std::" in code
152
- if language.lower() == "java":
153
- return "public class" in code or "public static void main" in code or ".java" in code
154
- if language.lower() == "c#":
155
- return "using system" in code or "namespace" in code or ".cs" in code
156
- if language.lower() == "javascript":
157
- return "function " in code or "const " in code or "let " in code or "var " in code or ".js" in code
158
- if language.lower() == "typescript":
159
- return "function " in code or "const " in code or "let " in code or "var " in code or ": string" in code or ".ts" in code
160
- if language.lower() == "html":
161
- return "<html" in code or "<!doctype html" in code
162
- return True # fallback
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
163
 
164
- def agentic_workflow(code, skill_level, programming_language, explanation_language, user_role):
165
- timeline = []
166
- suggestions = []
167
 
168
- explain_prompt = (
169
- f"Explain the following {programming_language} code line by line or function by function "
170
- f"for a {skill_level.lower()} {user_role} in {explanation_language}:\n{code}"
171
- )
172
- explanation = groq_api_call(explain_prompt)
173
- timeline.append({
174
- "step": "Explain",
175
- "description": "Step-by-step explanation of your code.",
176
- "output": explanation,
177
- "code": code
178
- })
179
- suggestions.append("Refactor your code for better readability and performance.")
180
 
181
- refactor_prompt = (
182
- f"Refactor the following {programming_language} code for better readability, performance, and structure. "
183
- f"Explain what changes you made and why, for a {skill_level.lower()} {user_role} in {explanation_language}:\n{code}"
184
- )
185
- refactor_response = groq_api_call(refactor_prompt)
186
- if "```" in refactor_response:
187
- parts = refactor_response.split("```")
188
- refactor_explanation = parts[0].strip()
189
- refactored_code = ""
190
- for i in range(1, len(parts)):
191
- if parts[i].strip().startswith(programming_language.lower()):
192
- refactored_code = parts[i].strip().split('\n', 1)[1] if '\n' in parts[i] else ""
193
- break
194
- elif i == 1:
195
- refactored_code = parts[i].strip().split('\n', 1)[1] if '\n' in parts[i] else ""
196
- if not refactored_code:
197
- refactored_code = refactor_response.strip()
198
- else:
199
- refactor_explanation = "Refactored code below."
200
- refactored_code = refactor_response.strip()
201
- timeline.append({
202
- "step": "Refactor",
203
- "description": refactor_explanation,
204
- "output": refactored_code,
205
- "code": refactored_code
206
- })
207
- suggestions.append("Review the refactored code for best practices and improvements.")
208
-
209
- review_prompt = (
210
- f"Provide a code review for the following {programming_language} code. "
211
- f"Include feedback on best practices, code smells, optimization, and security issues, for a {skill_level.lower()} {user_role} in {explanation_language}:\n{refactored_code}"
212
- )
213
- review_feedback = groq_api_call(review_prompt)
214
- timeline.append({
215
- "step": "Review",
216
- "description": "AI code review and feedback.",
217
- "output": review_feedback,
218
- "code": refactored_code
219
- })
220
- suggestions.append("Generate unit tests for your code.")
221
-
222
- test_prompt = (
223
- f"Write unit tests for the following {programming_language} code. "
224
- f"Use pytest style and cover all functions. For a {skill_level.lower()} {user_role} in {explanation_language}:\n{refactored_code}"
225
- )
226
- test_code = groq_api_call(test_prompt)
227
- timeline.append({
228
- "step": "Test Generation",
229
- "description": "AI-generated unit tests for your code.",
230
- "output": test_code,
231
- "code": test_code
232
  })
233
- suggestions.append("Run the generated tests in your local environment.")
234
 
235
- return timeline, suggestions
236
-
237
- st.markdown(
238
- "<h2 style='text-align: center; color: #22304a; font-weight: 600; margin-bottom: 0.5em;'>AI Code Assistant</h2>",
239
- unsafe_allow_html=True
240
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241
 
242
- with st.sidebar:
243
- st.title("Settings")
244
- programming_language = st.selectbox(
245
- "Programming Language",
246
- ["Python", "C++", "Java", "C#", "JavaScript", "TypeScript", "HTML"]
247
- )
248
- explanation_language = st.selectbox(
249
- "Explanation Language",
250
- ["English", "Urdu", "Chinese", "Spanish"]
251
- )
252
- skill_level = st.selectbox("Skill Level", ["Beginner", "Intermediate", "Expert"])
253
- user_role = st.selectbox(
254
- "Choose Role",
255
- ["Data Scientist", "Backend Developer", "Frontend Developer", "Student"]
256
  )
257
- st.markdown("---")
258
- st.markdown("<span style='color:#fff;'>Powered by <b>BLACKBOX.AI</b></span>", unsafe_allow_html=True)
259
-
260
- if "code" not in st.session_state:
261
- st.session_state.code = ""
262
- if "timeline" not in st.session_state:
263
- st.session_state.timeline = []
264
- if "suggestions" not in st.session_state:
265
- st.session_state.suggestions = []
266
- if "chat_history" not in st.session_state:
267
- st.session_state.chat_history = []
268
-
269
- col1, col2 = st.columns([2, 3], gap="large")
270
-
271
- with col1:
272
- st.subheader(f"{programming_language} Code")
273
- uploaded_file = st.file_uploader(f"Upload .{programming_language.lower()} file", type=[programming_language.lower()])
274
- code_input = st.text_area(
275
- "Paste or edit your code here:",
276
- height=300,
277
- value=st.session_state.code,
278
- key="main_code_input"
279
- )
280
- if uploaded_file is not None:
281
- code = uploaded_file.read().decode("utf-8")
282
- st.session_state.code = code
283
- st.success("File uploaded successfully.")
284
- elif code_input:
285
- st.session_state.code = code_input
286
-
287
- st.markdown(f"<b>Complexity:</b> {code_complexity(st.session_state.code)}", unsafe_allow_html=True)
288
-
289
- st.markdown("---")
290
- st.markdown("#### Agent Suggestions")
291
- for suggestion in st.session_state.suggestions[-3:]:
292
- st.markdown(f"- {suggestion}")
293
-
294
- st.markdown("---")
295
- st.markdown("#### Download Full Report")
296
- if st.session_state.timeline:
297
- report = ""
298
- for step in st.session_state.timeline:
299
- report += f"## {step['step']}\n{step['description']}\n\n{step['output']}\n\n"
300
- st.download_button("Download Report", report, file_name="ai_code_assistant_report.txt")
301
-
302
- with col2:
303
- st.subheader("Agentic Workflow")
304
- if st.button("Run Full AI Agent Workflow"):
305
- if not st.session_state.code.strip():
306
- st.warning("Please enter or upload code first.")
307
- else:
308
- # Language check
309
- if not code_matches_language(st.session_state.code, programming_language):
310
- st.error(f"It looks like you provided code in a different language. Please provide {programming_language} code.")
311
- else:
312
- code_type = detect_code_type(st.session_state.code, programming_language)
313
- # Role/code type enforcement
314
- if code_type == "data_science" and user_role != "Data Scientist":
315
- st.error("It looks like you provided data science code. Please select 'Data Scientist' as your role.")
316
- elif code_type == "frontend" and user_role != "Frontend Developer":
317
- st.error("It looks like you provided frontend code. Please select 'Frontend Developer' as your role.")
318
- elif code_type == "backend" and user_role != "Backend Developer":
319
- st.error("It looks like you provided backend code. Please select 'Backend Developer' as your role.")
320
- elif code_type == "unknown":
321
- st.warning("Could not determine the code type. Please make sure your code is complete and clear.")
322
- else:
323
- with st.spinner("AI Agent is working through all steps..."):
324
- timeline, suggestions = agentic_workflow(
325
- st.session_state.code,
326
- skill_level,
327
- programming_language,
328
- explanation_language,
329
- user_role
330
- )
331
- st.session_state.timeline = timeline
332
- st.session_state.suggestions = suggestions
333
- st.success("Agentic workflow complete. See timeline below.")
334
-
335
- # Chatbox with history using Blackbox AI agent
336
- st.subheader("Chat with Blackbox AI Agent")
337
- user_input = st.text_input("Enter your message:", key="chat_input")
338
- if user_input:
339
- st.session_state.chat_history.append({"role": "user", "content": user_input})
340
- response = blackbox_ai_call(st.session_state.chat_history)
341
- st.session_state.chat_history.append({"role": "assistant", "content": response})
342
-
343
- for chat in st.session_state.chat_history:
344
- if chat["role"] == "user":
345
- st.markdown(f"**You:** {chat['content']}")
346
- else:
347
- st.markdown(f"**Blackbox AI:** {chat['content']}")
348
-
349
- # --- Semantic Search with history ---
350
- st.markdown("---")
351
- st.subheader("Semantic Search with Contextual History")
352
-
353
- if "semantic_search_history" not in st.session_state:
354
- st.session_state.semantic_search_history = []
355
-
356
- sem_code = st.text_area("Your Code for Semantic Search", height=300, placeholder="Paste your code here...")
357
- sem_question = st.text_input("Ask a question about your code:")
358
-
359
- if st.button("Ask Semantic Search"):
360
- if not sem_code.strip() or not sem_question.strip():
361
- st.warning("Please provide both code and a question.")
362
  else:
363
- # Append current question to history
364
- st.session_state.semantic_search_history.append({"question": sem_question, "answer": None})
365
-
366
- # Build context from history
367
- context = ""
368
- for entry in st.session_state.semantic_search_history:
369
- if entry["answer"]:
370
- context += f"Q: {entry['question']}\nA: {entry['answer']}\n\n"
 
 
 
 
 
 
 
 
 
 
371
  else:
372
- context += f"Q: {entry['question']}\n"
373
-
374
- # Combine context with current code and question
375
- prompt = (
376
- f"You are a helpful {programming_language} expert assisting a user.\n"
377
- f"Here is the code:\n{sem_code}\n\n"
378
- f"Conversation history:\n{context}\n"
379
- f"Please answer the latest question."
380
- )
381
-
382
- # Call Blackbox AI agent with accumulated context
383
- # For demonstration, we use semantic_search_improved as placeholder
384
- answer = semantic_search_improved(sem_code, sem_question, programming_language, skill_level, user_role, explanation_language)
385
-
386
- # Update the last answer in history
387
- st.session_state.semantic_search_history[-1]["answer"] = answer
388
-
389
- st.markdown("### Answer")
390
- st.markdown(answer)
391
-
392
- if st.session_state.semantic_search_history:
393
- st.markdown("### Semantic Search History")
394
- for entry in st.session_state.semantic_search_history:
395
- st.markdown(f"**Q:** {entry['question']}")
396
- if entry["answer"]:
397
- st.markdown(f"**A:** {entry['answer']}")
398
-
399
- st.markdown("---")
400
- st.markdown('<div style="text-align: center; color: #22304a; font-size: 1rem; margin-top: 2em;">Powered by <b>BLACKBOX.AI</b></div>', unsafe_allow_html=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ import difflib
3
  import os
4
+ import re
5
+ import hashlib
6
+ from groq import Groq
7
 
8
+ # --- Page config ---
9
+ st.set_page_config(page_title="๐Ÿš€ AI Assistant with Workflow + Semantic Search", layout="wide")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
  # --- Groq API Setup ---
12
  GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
13
  if not GROQ_API_KEY:
14
+ st.error("โŒ Please set your GROQ_API_KEY environment variable.")
15
  st.stop()
16
  client = Groq(api_key=GROQ_API_KEY)
17
 
18
+ # --- Cache for embeddings ---
19
+ embedding_cache = {}
20
+
21
+ def get_embedding(text):
22
+ key = hashlib.sha256(text.encode()).hexdigest()
23
+ if key in embedding_cache:
24
+ return embedding_cache[key]
25
+ embedding = [ord(c) % 100 / 100 for c in text[:512]]
26
+ embedding_cache[key] = embedding
27
+ return embedding
28
+
29
+ def cosine_similarity(vec1, vec2):
30
+ dot = sum(a*b for a,b in zip(vec1, vec2))
31
+ norm1 = sum(a*a for a in vec1) ** 0.5
32
+ norm2 = sum(b*b for b in vec2) ** 0.5
33
+ return dot / (norm1 * norm2 + 1e-8)
34
+
35
+ def split_code_into_chunks(code, lang):
36
+ if lang.lower() == "python":
37
+ pattern = r'(def\\s+\\w+\\(.*?\\):|class\\s+\\w+\\(?.*?\\)?:)'
38
+ splits = re.split(pattern, code)
39
+ chunks = []
40
+ for i in range(1, len(splits), 2):
41
+ header = splits[i]
42
+ body = splits[i+1] if (i+1) < len(splits) else ""
43
+ chunks.append(header + body)
44
+ return chunks if chunks else [code]
45
+ else:
46
+ return [code]
47
 
48
+ def groq_call(prompt):
49
+ resp = client.chat.completions.create(
50
  messages=[{"role": "user", "content": prompt}],
51
  model="llama3-70b-8192",
52
  )
53
+ return resp.choices[0].message.content
54
+
55
+ def semantic_search_improved(code, question, lang, skill, role, explain_lang):
56
+ chunks = split_code_into_chunks(code, lang)
57
+ question_emb = get_embedding(question)
58
+ scored_chunks = []
59
+ for chunk in chunks:
60
+ emb = get_embedding(chunk)
61
+ score = cosine_similarity(question_emb, emb)
62
+ scored_chunks.append((score, chunk))
63
+ scored_chunks.sort(key=lambda x: x[0], reverse=True)
64
+ top_chunks = [c for _, c in scored_chunks[:3]]
65
+ combined_code = "\\n\\n".join(top_chunks)
66
+ prompt = (
67
+ f"You are a friendly and insightful {lang} expert helping a {skill} {role}.\\n"
68
+ f"Based on these relevant code snippets:\\n{combined_code}\\n"
69
+ f"Answer this question in {explain_lang}:\\n{question}\\n"
70
+ f"Explain which parts handle the question and how to modify them if needed."
71
+ )
72
+ return groq_call(prompt)
73
 
74
+ def error_detection_and_fixes(refactored_code, lang, skill, role, explain_lang):
75
+ prompt = (
76
+ f"You are a senior {lang} developer. Analyze this code for bugs, security flaws, "
77
+ f"and performance issues. Suggest fixes with explanations in {explain_lang}:\\n\\n{refactored_code}"
78
+ )
79
+ return groq_call(prompt)
80
+
81
+ def agentic_workflow(code, skill_level, programming_language, explanation_language, user_role):
82
+ timeline = []
83
+ suggestions = []
84
+
85
+ # Explanation
86
+ explain_prompt = (
87
+ f"You are a friendly and insightful {programming_language} expert helping a {skill_level} {user_role}. "
88
+ f"Explain this code in {explanation_language} with clear examples, analogies, and why each part matters:\\n\\n{code}"
89
+ )
90
+ explanation = groq_call(explain_prompt)
91
+ timeline.append({"step": "Explain", "description": "Detailed explanation", "output": explanation, "code": code})
92
+ suggestions.append("Consider refactoring your code to improve readability and performance.")
93
+
94
+ # Refactor
95
+ refactor_prompt = (
96
+ f"Refactor this {programming_language} code. Explain the changes like a mentor helping a {skill_level} {user_role}. "
97
+ f"Include best practices and improvements:\\n\\n{code}"
98
+ )
99
+ refactor_response = groq_call(refactor_prompt)
100
+ if "```" in refactor_response:
101
+ parts = refactor_response.split("```")
102
+ refactored_code = ""
103
+ for part in parts:
104
+ if part.strip().startswith(programming_language.lower()):
105
+ refactored_code = part.strip().split('\\n', 1)[1] if '\\n' in part else ""
106
+ break
107
+ if not refactored_code:
108
+ refactored_code = refactor_response
109
+ else:
110
+ refactored_code = refactor_response
111
+ timeline.append({"step": "Refactor", "description": "Refactored code with improvements", "output": refactored_code, "code": refactored_code})
112
+ suggestions.append("Review the refactored code and adapt it to your style or project needs.")
113
+
114
+ # Review
115
+ review_prompt = (
116
+ f"As a senior {programming_language} developer, review the refactored code. "
117
+ f"Give constructive feedback on strengths, weaknesses, performance, security, and improvements in {explanation_language}:\\n\\n{refactored_code}"
118
+ )
119
+ review = groq_call(review_prompt)
120
+ timeline.append({"step": "Review", "description": "Code review and suggestions", "output": review, "code": refactored_code})
121
+ suggestions.append("Incorporate review feedback for cleaner, robust code.")
122
+
123
+ # Error detection & fixes
124
+ errors = error_detection_and_fixes(refactored_code, programming_language, skill_level, user_role, explanation_language)
125
+ timeline.append({"step": "Error Detection", "description": "Bugs, security, performance suggestions", "output": errors, "code": refactored_code})
126
+ suggestions.append("Apply fixes to improve code safety and performance.")
127
+
128
+ # Test generation
129
+ test_prompt = (
130
+ f"Write clear, effective unit tests for this {programming_language} code. "
131
+ f"Explain what each test does in {explanation_language}, for a {skill_level} {user_role}:\\n\\n{refactored_code}"
132
+ )
133
+ tests = groq_call(test_prompt)
134
+ timeline.append({"step": "Test Generation", "description": "Generated unit tests", "output": tests, "code": tests})
135
+ suggestions.append("Run generated tests locally to validate changes.")
136
+
137
+ return timeline, suggestions
138
+
139
+ def get_inline_diff_html(original, modified):
140
+ differ = difflib.HtmlDiff(tabsize=4, wrapcolumn=80)
141
+ html = differ.make_table(
142
+ original.splitlines(), modified.splitlines(),
143
+ "Original", "Refactored", context=True, numlines=2
144
+ )
145
+ return f'<div style="overflow-x:auto; max-height:400px;">{html}</div>'
146
 
147
  def detect_code_type(code, programming_language):
148
  backend_keywords = [
 
172
  return 'frontend'
173
  return 'unknown'
174
 
175
+ def code_complexity(code):
176
+ lines = code.count('\\n') + 1
177
+ functions = code.count('def ')
178
+ classes = code.count('class ')
179
+ comments = code.count('#')
180
+ return f"Lines: {lines}, Functions: {functions}, Classes: {classes}, Comments: {comments}"
181
+
182
  def code_matches_language(code: str, language: str) -> bool:
183
+ code_lower = code.strip().lower()
184
+ language = language.lower()
185
+
186
+ patterns = {
187
+ "python": [
188
+ "def ", "class ", "import ", "from ", "try:", "except", "raise", "lambda",
189
+ "with ", "yield", "async ", "await", "print(", "self.", "__init__", "__name__",
190
+ "if __name__ == '__main__':", "#!", # shebang for executable scripts
191
+ ],
192
+ "c++": [
193
+ "#include", "int main(", "std::", "::", "cout <<", "cin >>", "new ", "delete ",
194
+ "try {", "catch(", "template<", "using namespace", "class ", "struct ", "#define",
195
+ ],
196
+ "java": [
197
+ "package ", "import java.", "public class", "private ", "protected ", "public static void main",
198
+ "System.out.println", "try {", "catch(", "throw new ", "implements ", "extends ",
199
+ "@Override", "interface ", "enum ", "synchronized ", "final ",
200
+ ],
201
+ "c#": [
202
+ "using System", "namespace ", "class ", "interface ", "public static void Main",
203
+ "Console.WriteLine", "try {", "catch(", "throw ", "async ", "await ", "get;", "set;",
204
+ "List<", "Dictionary<", "[Serializable]", "[Obsolete]",
205
+ ],
206
+ "javascript": [
207
+ "function ", "const ", "let ", "var ", "document.", "window.", "console.log",
208
+ "if(", "for(", "while(", "switch(", "try {", "catch(", "export ", "import ", "async ",
209
+ "await ", "=>", "this.", "class ", "prototype", "new ", "$(",
210
+ ],
211
+ "typescript": [
212
+ "function ", "const ", "let ", "interface ", "type ", ": string", ": number", ": boolean",
213
+ "implements ", "extends ", "enum ", "public ", "private ", "protected ", "readonly ",
214
+ "import ", "export ", "console.log", "async ", "await ", "=>", "this.",
215
+ ],
216
+ "html": [
217
+ "<!doctype html", "<html", "<head>", "<body>", "<script", "<style", "<meta ", "<link ",
218
+ "<title>", "<div", "<span", "<p>", "<h1>", "<ul>", "<li>", "<form", "<input", "<button",
219
+ "<table", "<footer", "<header", "<section", "<article", "<nav", "<img", "<a ", "</html>",
220
+ ],
221
+ }
222
 
223
+ match_patterns = patterns.get(language, [])
224
+ match_count = sum(1 for pattern in match_patterns if pattern in code_lower)
225
+ return match_count >= 1
226
 
227
+ # --- Blackbox Agent Chat History (Session-only) ---
228
+ if 'blackbox_chat_history' not in st.session_state:
229
+ st.session_state['blackbox_chat_history'] = []
 
 
 
 
 
 
 
 
 
230
 
231
+ def add_to_blackbox_history(prompt, response, mode):
232
+ st.session_state['blackbox_chat_history'].append({
233
+ 'mode': mode, # 'workflow' or 'semantic_search'
234
+ 'prompt': prompt,
235
+ 'response': response
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
236
  })
 
237
 
238
+ def show_blackbox_history():
239
+ st.sidebar.markdown('---')
240
+ st.sidebar.subheader('๐Ÿ•‘ Blackbox Agent Chat History')
241
+ if not st.session_state['blackbox_chat_history']:
242
+ st.sidebar.info('No chat history this session.')
243
+ else:
244
+ for i, entry in enumerate(reversed(st.session_state['blackbox_chat_history'])):
245
+ with st.sidebar.expander(f"{entry['mode'].replace('_', ' ').title()} #{len(st.session_state['blackbox_chat_history'])-i}"):
246
+ st.markdown(f"**Prompt:**\\n{entry['prompt']}")
247
+ st.markdown(f"**Response:**\\n{entry['response']}")
248
+
249
+ # Show chat history in sidebar
250
+ show_blackbox_history()
251
+
252
+ # --- Sidebar ---
253
+ st.sidebar.title("๐Ÿ”ง Configuration")
254
+ lang = st.sidebar.selectbox("Programming Language", ["Python", "JavaScript", "C++", "Java", "C#", "TypeScript"])
255
+ skill = st.sidebar.selectbox("Skill Level", ["Beginner", "Intermediate", "Expert"])
256
+ role = st.sidebar.selectbox("Your Role", ["Student", "Frontend Developer", "Backend Developer", "Data Scientist"])
257
+ explain_lang = st.sidebar.selectbox("Explanation Language", ["English", "Spanish", "Chinese", "Urdu"])
258
+ st.sidebar.markdown("---")
259
+ st.sidebar.markdown("<span style='color:#fff;'>Powered by <b>BLACKBOX.AI</b></span>", unsafe_allow_html=True)
260
+
261
+ tabs = st.tabs(["๐Ÿง  Full AI Workflow", "๐Ÿ” Semantic Search"])
262
+
263
+ # --- Tab 1: Full AI Workflow ---
264
+ with tabs[0]:
265
+ st.title("๐Ÿง  Full AI Workflow")
266
+ file_types = {
267
+ "Python": ["py"],
268
+ "JavaScript": ["js"],
269
+ "C++": ["cpp", "h", "hpp"],
270
+ "Java": ["java"],
271
+ "C#": ["cs"],
272
+ "TypeScript": ["ts"],
273
+ }
274
 
275
+ uploaded_file = st.file_uploader(
276
+ f"Upload {', '.join(file_types.get(lang, []))} file(s)",
277
+ type=file_types.get(lang, None)
 
 
 
 
 
 
 
 
 
 
 
278
  )
279
+ if uploaded_file:
280
+ code_input = uploaded_file.read().decode("utf-8")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
281
  else:
282
+ code_input = st.text_area("Your Code", height=300, placeholder="Paste your code here...")
283
+
284
+ if code_input:
285
+ st.markdown(f"<b>Complexity:</b> {code_complexity(code_input)}", unsafe_allow_html=True)
286
+
287
+ if st.button("Run AI Workflow"):
288
+ if not code_input.strip():
289
+ st.warning("Please paste or upload your code.")
290
+ elif not code_matches_language(code_input, lang):
291
+ st.error(f"The pasted code doesnโ€™t look like valid {lang} code. Please check your code or select the correct language.")
292
+ else:
293
+ code_type = detect_code_type(code_input, lang)
294
+ if code_type == "data_science" and role != "Data Scientist":
295
+ st.error("Data science code detected. Please select 'Data Scientist' role.")
296
+ elif code_type == "frontend" and role != "Frontend Developer":
297
+ st.error("Frontend code detected. Please select 'Frontend Developer' role.")
298
+ elif code_type == "backend" and role != "Backend Developer":
299
+ st.error("Backend code detected. Please select 'Backend Developer' role.")
300
  else:
301
+ with st.spinner("Running agentic workflow..."):
302
+ timeline, suggestions = agentic_workflow(code_input, skill, lang, explain_lang, role)
303
+ # Log to Blackbox chat history
304
+ add_to_blackbox_history(f"[Full Workflow] Code:\\n{code_input}", f"{timeline[-1]['output'] if timeline else ''}", mode='workflow')
305
+ # Show each step in an expander
306
+ for step in timeline:
307
+ with st.expander(f"โœ… {step['step']} - {step['description']}"):
308
+ if step['step'] == "Refactor":
309
+ diff_html = get_inline_diff_html(code_input, step['code'])
310
+ st.markdown(diff_html, unsafe_allow_html=True)
311
+ st.code(step['output'], language=lang.lower())
312
+ else:
313
+ st.markdown(step['output'])
314
+
315
+ st.markdown("#### Agent Suggestions")
316
+ for s in suggestions:
317
+ st.markdown(f"- {s}")
318
+
319
+ # Download buttons after suggestions
320
+ st.markdown("---")
321
+ st.markdown("### ๐Ÿ“ฅ Download Results")
322
+
323
+ report_text = ""
324
+ for step in timeline:
325
+ report_text += f"## {step['step']}\\n{step['description']}\\n\\n{step['output']}\\n\\n"
326
+
327
+ st.download_button(
328
+ label="๐Ÿ“„ Download Full Workflow Report",
329
+ data=report_text,
330
+ file_name="ai_workflow_report.txt",
331
+ mime="text/plain",
332
+ )
333
+
334
+ # --- Tab 2: Semantic Search ---
335
+ with tabs[1]:
336
+ st.title("๐Ÿ” Semantic Search")
337
+ sem_code = st.text_area("Your Code", height=300, placeholder="Paste your code...")
338
+ sem_q = st.text_input("Your Question", placeholder="E.g., What does this function do?")
339
+ if st.button("Run Semantic Search"):
340
+ if not sem_code.strip() or not sem_q.strip():
341
+ st.warning("Code and question required.")
342
+ else:
343
+ with st.spinner("Running semantic search..."):
344
+ answer = semantic_search_improved(sem_code, sem_q, lang, skill, role, explain_lang)
345
+ # Log to Blackbox chat history
346
+ add_to_blackbox_history(f"[Semantic Search] Q: {sem_q}\\nCode:\\n{sem_code}", answer, mode='semantic_search')
347
+ st.markdown("### ๐Ÿ“Œ Answer")
348
+ st.markdown(answer)
349
+
350
+ st.markdown("---")