Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,119 +1,148 @@
|
|
| 1 |
-
import difflib
|
| 2 |
import streamlit as st
|
| 3 |
-
|
| 4 |
import os
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
# ---
|
| 7 |
-
st.set_page_config(page_title="AI
|
| 8 |
-
|
| 9 |
-
# --- Custom CSS for Professional Look ---
|
| 10 |
-
st.markdown("""
|
| 11 |
-
<style>
|
| 12 |
-
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;600&display=swap');
|
| 13 |
-
html, body, [class*="css"] {
|
| 14 |
-
font-family: 'Inter', sans-serif;
|
| 15 |
-
background-color: #f7f9fb;
|
| 16 |
-
}
|
| 17 |
-
.stApp {
|
| 18 |
-
background-color: #f7f9fb;
|
| 19 |
-
}
|
| 20 |
-
.stSidebar {
|
| 21 |
-
background-color: #22304a !important;
|
| 22 |
-
}
|
| 23 |
-
.stButton>button {
|
| 24 |
-
background-color: #22304a;
|
| 25 |
-
color: #fff;
|
| 26 |
-
border-radius: 6px;
|
| 27 |
-
border: none;
|
| 28 |
-
font-weight: 600;
|
| 29 |
-
padding: 0.5rem 1.5rem;
|
| 30 |
-
margin-top: 0.5rem;
|
| 31 |
-
margin-bottom: 0.5rem;
|
| 32 |
-
transition: background 0.2s;
|
| 33 |
-
}
|
| 34 |
-
.stButton>button:hover {
|
| 35 |
-
background-color: #1a2333;
|
| 36 |
-
color: #fff;
|
| 37 |
-
}
|
| 38 |
-
.stTextInput>div>div>input, .stTextArea>div>textarea {
|
| 39 |
-
background: #fff;
|
| 40 |
-
border: 1px solid #d1d5db;
|
| 41 |
-
border-radius: 6px;
|
| 42 |
-
color: #22304a;
|
| 43 |
-
font-size: 1rem;
|
| 44 |
-
}
|
| 45 |
-
.stDownloadButton>button {
|
| 46 |
-
background-color: #22304a;
|
| 47 |
-
color: #fff;
|
| 48 |
-
border-radius: 6px;
|
| 49 |
-
border: none;
|
| 50 |
-
font-weight: 600;
|
| 51 |
-
padding: 0.5rem 1.5rem;
|
| 52 |
-
margin-top: 0.5rem;
|
| 53 |
-
margin-bottom: 0.5rem;
|
| 54 |
-
transition: background 0.2s;
|
| 55 |
-
}
|
| 56 |
-
.stDownloadButton>button:hover {
|
| 57 |
-
background-color: #1a2333;
|
| 58 |
-
color: #fff;
|
| 59 |
-
}
|
| 60 |
-
.stExpanderHeader {
|
| 61 |
-
font-weight: 600;
|
| 62 |
-
color: #22304a;
|
| 63 |
-
font-size: 1.1rem;
|
| 64 |
-
}
|
| 65 |
-
.stMarkdown {
|
| 66 |
-
color: #22304a;
|
| 67 |
-
}
|
| 68 |
-
.stAlert {
|
| 69 |
-
border-radius: 6px;
|
| 70 |
-
}
|
| 71 |
-
</style>
|
| 72 |
-
""", unsafe_allow_html=True)
|
| 73 |
|
| 74 |
# --- Groq API Setup ---
|
| 75 |
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
|
| 76 |
if not GROQ_API_KEY:
|
| 77 |
-
st.error("
|
| 78 |
st.stop()
|
| 79 |
client = Groq(api_key=GROQ_API_KEY)
|
| 80 |
|
| 81 |
-
# ---
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
-
def
|
| 92 |
-
|
| 93 |
messages=[{"role": "user", "content": prompt}],
|
| 94 |
model="llama3-70b-8192",
|
| 95 |
)
|
| 96 |
-
return
|
| 97 |
-
|
| 98 |
-
def
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
-
def
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
def detect_code_type(code, programming_language):
|
| 119 |
backend_keywords = [
|
|
@@ -143,258 +172,179 @@ def detect_code_type(code, programming_language):
|
|
| 143 |
return 'frontend'
|
| 144 |
return 'unknown'
|
| 145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
def code_matches_language(code: str, language: str) -> bool:
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
)
|
| 172 |
-
explanation = groq_api_call(explain_prompt)
|
| 173 |
-
timeline.append({
|
| 174 |
-
"step": "Explain",
|
| 175 |
-
"description": "Step-by-step explanation of your code.",
|
| 176 |
-
"output": explanation,
|
| 177 |
-
"code": code
|
| 178 |
-
})
|
| 179 |
-
suggestions.append("Refactor your code for better readability and performance.")
|
| 180 |
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
if "```" in refactor_response:
|
| 187 |
-
parts = refactor_response.split("```")
|
| 188 |
-
refactor_explanation = parts[0].strip()
|
| 189 |
-
refactored_code = ""
|
| 190 |
-
for i in range(1, len(parts)):
|
| 191 |
-
if parts[i].strip().startswith(programming_language.lower()):
|
| 192 |
-
refactored_code = parts[i].strip().split('\n', 1)[1] if '\n' in parts[i] else ""
|
| 193 |
-
break
|
| 194 |
-
elif i == 1:
|
| 195 |
-
refactored_code = parts[i].strip().split('\n', 1)[1] if '\n' in parts[i] else ""
|
| 196 |
-
if not refactored_code:
|
| 197 |
-
refactored_code = refactor_response.strip()
|
| 198 |
-
else:
|
| 199 |
-
refactor_explanation = "Refactored code below."
|
| 200 |
-
refactored_code = refactor_response.strip()
|
| 201 |
-
timeline.append({
|
| 202 |
-
"step": "Refactor",
|
| 203 |
-
"description": refactor_explanation,
|
| 204 |
-
"output": refactored_code,
|
| 205 |
-
"code": refactored_code
|
| 206 |
-
})
|
| 207 |
-
suggestions.append("Review the refactored code for best practices and improvements.")
|
| 208 |
-
|
| 209 |
-
review_prompt = (
|
| 210 |
-
f"Provide a code review for the following {programming_language} code. "
|
| 211 |
-
f"Include feedback on best practices, code smells, optimization, and security issues, for a {skill_level.lower()} {user_role} in {explanation_language}:\n{refactored_code}"
|
| 212 |
-
)
|
| 213 |
-
review_feedback = groq_api_call(review_prompt)
|
| 214 |
-
timeline.append({
|
| 215 |
-
"step": "Review",
|
| 216 |
-
"description": "AI code review and feedback.",
|
| 217 |
-
"output": review_feedback,
|
| 218 |
-
"code": refactored_code
|
| 219 |
-
})
|
| 220 |
-
suggestions.append("Generate unit tests for your code.")
|
| 221 |
-
|
| 222 |
-
test_prompt = (
|
| 223 |
-
f"Write unit tests for the following {programming_language} code. "
|
| 224 |
-
f"Use pytest style and cover all functions. For a {skill_level.lower()} {user_role} in {explanation_language}:\n{refactored_code}"
|
| 225 |
-
)
|
| 226 |
-
test_code = groq_api_call(test_prompt)
|
| 227 |
-
timeline.append({
|
| 228 |
-
"step": "Test Generation",
|
| 229 |
-
"description": "AI-generated unit tests for your code.",
|
| 230 |
-
"output": test_code,
|
| 231 |
-
"code": test_code
|
| 232 |
})
|
| 233 |
-
suggestions.append("Run the generated tests in your local environment.")
|
| 234 |
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
st.
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
"Programming Language",
|
| 246 |
-
["Python", "C++", "Java", "C#", "JavaScript", "TypeScript", "HTML"]
|
| 247 |
-
)
|
| 248 |
-
explanation_language = st.selectbox(
|
| 249 |
-
"Explanation Language",
|
| 250 |
-
["English", "Urdu", "Chinese", "Spanish"]
|
| 251 |
-
)
|
| 252 |
-
skill_level = st.selectbox("Skill Level", ["Beginner", "Intermediate", "Expert"])
|
| 253 |
-
user_role = st.selectbox(
|
| 254 |
-
"Choose Role",
|
| 255 |
-
["Data Scientist", "Backend Developer", "Frontend Developer", "Student"]
|
| 256 |
)
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
if "code" not in st.session_state:
|
| 261 |
-
st.session_state.code = ""
|
| 262 |
-
if "timeline" not in st.session_state:
|
| 263 |
-
st.session_state.timeline = []
|
| 264 |
-
if "suggestions" not in st.session_state:
|
| 265 |
-
st.session_state.suggestions = []
|
| 266 |
-
if "chat_history" not in st.session_state:
|
| 267 |
-
st.session_state.chat_history = []
|
| 268 |
-
|
| 269 |
-
col1, col2 = st.columns([2, 3], gap="large")
|
| 270 |
-
|
| 271 |
-
with col1:
|
| 272 |
-
st.subheader(f"{programming_language} Code")
|
| 273 |
-
uploaded_file = st.file_uploader(f"Upload .{programming_language.lower()} file", type=[programming_language.lower()])
|
| 274 |
-
code_input = st.text_area(
|
| 275 |
-
"Paste or edit your code here:",
|
| 276 |
-
height=300,
|
| 277 |
-
value=st.session_state.code,
|
| 278 |
-
key="main_code_input"
|
| 279 |
-
)
|
| 280 |
-
if uploaded_file is not None:
|
| 281 |
-
code = uploaded_file.read().decode("utf-8")
|
| 282 |
-
st.session_state.code = code
|
| 283 |
-
st.success("File uploaded successfully.")
|
| 284 |
-
elif code_input:
|
| 285 |
-
st.session_state.code = code_input
|
| 286 |
-
|
| 287 |
-
st.markdown(f"<b>Complexity:</b> {code_complexity(st.session_state.code)}", unsafe_allow_html=True)
|
| 288 |
-
|
| 289 |
-
st.markdown("---")
|
| 290 |
-
st.markdown("#### Agent Suggestions")
|
| 291 |
-
for suggestion in st.session_state.suggestions[-3:]:
|
| 292 |
-
st.markdown(f"- {suggestion}")
|
| 293 |
-
|
| 294 |
-
st.markdown("---")
|
| 295 |
-
st.markdown("#### Download Full Report")
|
| 296 |
-
if st.session_state.timeline:
|
| 297 |
-
report = ""
|
| 298 |
-
for step in st.session_state.timeline:
|
| 299 |
-
report += f"## {step['step']}\n{step['description']}\n\n{step['output']}\n\n"
|
| 300 |
-
st.download_button("Download Report", report, file_name="ai_code_assistant_report.txt")
|
| 301 |
-
|
| 302 |
-
with col2:
|
| 303 |
-
st.subheader("Agentic Workflow")
|
| 304 |
-
if st.button("Run Full AI Agent Workflow"):
|
| 305 |
-
if not st.session_state.code.strip():
|
| 306 |
-
st.warning("Please enter or upload code first.")
|
| 307 |
-
else:
|
| 308 |
-
# Language check
|
| 309 |
-
if not code_matches_language(st.session_state.code, programming_language):
|
| 310 |
-
st.error(f"It looks like you provided code in a different language. Please provide {programming_language} code.")
|
| 311 |
-
else:
|
| 312 |
-
code_type = detect_code_type(st.session_state.code, programming_language)
|
| 313 |
-
# Role/code type enforcement
|
| 314 |
-
if code_type == "data_science" and user_role != "Data Scientist":
|
| 315 |
-
st.error("It looks like you provided data science code. Please select 'Data Scientist' as your role.")
|
| 316 |
-
elif code_type == "frontend" and user_role != "Frontend Developer":
|
| 317 |
-
st.error("It looks like you provided frontend code. Please select 'Frontend Developer' as your role.")
|
| 318 |
-
elif code_type == "backend" and user_role != "Backend Developer":
|
| 319 |
-
st.error("It looks like you provided backend code. Please select 'Backend Developer' as your role.")
|
| 320 |
-
elif code_type == "unknown":
|
| 321 |
-
st.warning("Could not determine the code type. Please make sure your code is complete and clear.")
|
| 322 |
-
else:
|
| 323 |
-
with st.spinner("AI Agent is working through all steps..."):
|
| 324 |
-
timeline, suggestions = agentic_workflow(
|
| 325 |
-
st.session_state.code,
|
| 326 |
-
skill_level,
|
| 327 |
-
programming_language,
|
| 328 |
-
explanation_language,
|
| 329 |
-
user_role
|
| 330 |
-
)
|
| 331 |
-
st.session_state.timeline = timeline
|
| 332 |
-
st.session_state.suggestions = suggestions
|
| 333 |
-
st.success("Agentic workflow complete. See timeline below.")
|
| 334 |
-
|
| 335 |
-
# Chatbox with history using Blackbox AI agent
|
| 336 |
-
st.subheader("Chat with Blackbox AI Agent")
|
| 337 |
-
user_input = st.text_input("Enter your message:", key="chat_input")
|
| 338 |
-
if user_input:
|
| 339 |
-
st.session_state.chat_history.append({"role": "user", "content": user_input})
|
| 340 |
-
response = blackbox_ai_call(st.session_state.chat_history)
|
| 341 |
-
st.session_state.chat_history.append({"role": "assistant", "content": response})
|
| 342 |
-
|
| 343 |
-
for chat in st.session_state.chat_history:
|
| 344 |
-
if chat["role"] == "user":
|
| 345 |
-
st.markdown(f"**You:** {chat['content']}")
|
| 346 |
-
else:
|
| 347 |
-
st.markdown(f"**Blackbox AI:** {chat['content']}")
|
| 348 |
-
|
| 349 |
-
# --- Semantic Search with history ---
|
| 350 |
-
st.markdown("---")
|
| 351 |
-
st.subheader("Semantic Search with Contextual History")
|
| 352 |
-
|
| 353 |
-
if "semantic_search_history" not in st.session_state:
|
| 354 |
-
st.session_state.semantic_search_history = []
|
| 355 |
-
|
| 356 |
-
sem_code = st.text_area("Your Code for Semantic Search", height=300, placeholder="Paste your code here...")
|
| 357 |
-
sem_question = st.text_input("Ask a question about your code:")
|
| 358 |
-
|
| 359 |
-
if st.button("Ask Semantic Search"):
|
| 360 |
-
if not sem_code.strip() or not sem_question.strip():
|
| 361 |
-
st.warning("Please provide both code and a question.")
|
| 362 |
else:
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 371 |
else:
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import difflib
|
| 3 |
import os
|
| 4 |
+
import re
|
| 5 |
+
import hashlib
|
| 6 |
+
from groq import Groq
|
| 7 |
|
| 8 |
+
# --- Page config ---
|
| 9 |
+
st.set_page_config(page_title="๐ AI Assistant with Workflow + Semantic Search", layout="wide")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# --- Groq API Setup ---
|
| 12 |
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
|
| 13 |
if not GROQ_API_KEY:
|
| 14 |
+
st.error("โ Please set your GROQ_API_KEY environment variable.")
|
| 15 |
st.stop()
|
| 16 |
client = Groq(api_key=GROQ_API_KEY)
|
| 17 |
|
| 18 |
+
# --- Cache for embeddings ---
|
| 19 |
+
embedding_cache = {}
|
| 20 |
+
|
| 21 |
+
def get_embedding(text):
|
| 22 |
+
key = hashlib.sha256(text.encode()).hexdigest()
|
| 23 |
+
if key in embedding_cache:
|
| 24 |
+
return embedding_cache[key]
|
| 25 |
+
embedding = [ord(c) % 100 / 100 for c in text[:512]]
|
| 26 |
+
embedding_cache[key] = embedding
|
| 27 |
+
return embedding
|
| 28 |
+
|
| 29 |
+
def cosine_similarity(vec1, vec2):
|
| 30 |
+
dot = sum(a*b for a,b in zip(vec1, vec2))
|
| 31 |
+
norm1 = sum(a*a for a in vec1) ** 0.5
|
| 32 |
+
norm2 = sum(b*b for b in vec2) ** 0.5
|
| 33 |
+
return dot / (norm1 * norm2 + 1e-8)
|
| 34 |
+
|
| 35 |
+
def split_code_into_chunks(code, lang):
|
| 36 |
+
if lang.lower() == "python":
|
| 37 |
+
pattern = r'(def\\s+\\w+\\(.*?\\):|class\\s+\\w+\\(?.*?\\)?:)'
|
| 38 |
+
splits = re.split(pattern, code)
|
| 39 |
+
chunks = []
|
| 40 |
+
for i in range(1, len(splits), 2):
|
| 41 |
+
header = splits[i]
|
| 42 |
+
body = splits[i+1] if (i+1) < len(splits) else ""
|
| 43 |
+
chunks.append(header + body)
|
| 44 |
+
return chunks if chunks else [code]
|
| 45 |
+
else:
|
| 46 |
+
return [code]
|
| 47 |
|
| 48 |
+
def groq_call(prompt):
|
| 49 |
+
resp = client.chat.completions.create(
|
| 50 |
messages=[{"role": "user", "content": prompt}],
|
| 51 |
model="llama3-70b-8192",
|
| 52 |
)
|
| 53 |
+
return resp.choices[0].message.content
|
| 54 |
+
|
| 55 |
+
def semantic_search_improved(code, question, lang, skill, role, explain_lang):
|
| 56 |
+
chunks = split_code_into_chunks(code, lang)
|
| 57 |
+
question_emb = get_embedding(question)
|
| 58 |
+
scored_chunks = []
|
| 59 |
+
for chunk in chunks:
|
| 60 |
+
emb = get_embedding(chunk)
|
| 61 |
+
score = cosine_similarity(question_emb, emb)
|
| 62 |
+
scored_chunks.append((score, chunk))
|
| 63 |
+
scored_chunks.sort(key=lambda x: x[0], reverse=True)
|
| 64 |
+
top_chunks = [c for _, c in scored_chunks[:3]]
|
| 65 |
+
combined_code = "\\n\\n".join(top_chunks)
|
| 66 |
+
prompt = (
|
| 67 |
+
f"You are a friendly and insightful {lang} expert helping a {skill} {role}.\\n"
|
| 68 |
+
f"Based on these relevant code snippets:\\n{combined_code}\\n"
|
| 69 |
+
f"Answer this question in {explain_lang}:\\n{question}\\n"
|
| 70 |
+
f"Explain which parts handle the question and how to modify them if needed."
|
| 71 |
+
)
|
| 72 |
+
return groq_call(prompt)
|
| 73 |
|
| 74 |
+
def error_detection_and_fixes(refactored_code, lang, skill, role, explain_lang):
|
| 75 |
+
prompt = (
|
| 76 |
+
f"You are a senior {lang} developer. Analyze this code for bugs, security flaws, "
|
| 77 |
+
f"and performance issues. Suggest fixes with explanations in {explain_lang}:\\n\\n{refactored_code}"
|
| 78 |
+
)
|
| 79 |
+
return groq_call(prompt)
|
| 80 |
+
|
| 81 |
+
def agentic_workflow(code, skill_level, programming_language, explanation_language, user_role):
|
| 82 |
+
timeline = []
|
| 83 |
+
suggestions = []
|
| 84 |
+
|
| 85 |
+
# Explanation
|
| 86 |
+
explain_prompt = (
|
| 87 |
+
f"You are a friendly and insightful {programming_language} expert helping a {skill_level} {user_role}. "
|
| 88 |
+
f"Explain this code in {explanation_language} with clear examples, analogies, and why each part matters:\\n\\n{code}"
|
| 89 |
+
)
|
| 90 |
+
explanation = groq_call(explain_prompt)
|
| 91 |
+
timeline.append({"step": "Explain", "description": "Detailed explanation", "output": explanation, "code": code})
|
| 92 |
+
suggestions.append("Consider refactoring your code to improve readability and performance.")
|
| 93 |
+
|
| 94 |
+
# Refactor
|
| 95 |
+
refactor_prompt = (
|
| 96 |
+
f"Refactor this {programming_language} code. Explain the changes like a mentor helping a {skill_level} {user_role}. "
|
| 97 |
+
f"Include best practices and improvements:\\n\\n{code}"
|
| 98 |
+
)
|
| 99 |
+
refactor_response = groq_call(refactor_prompt)
|
| 100 |
+
if "```" in refactor_response:
|
| 101 |
+
parts = refactor_response.split("```")
|
| 102 |
+
refactored_code = ""
|
| 103 |
+
for part in parts:
|
| 104 |
+
if part.strip().startswith(programming_language.lower()):
|
| 105 |
+
refactored_code = part.strip().split('\\n', 1)[1] if '\\n' in part else ""
|
| 106 |
+
break
|
| 107 |
+
if not refactored_code:
|
| 108 |
+
refactored_code = refactor_response
|
| 109 |
+
else:
|
| 110 |
+
refactored_code = refactor_response
|
| 111 |
+
timeline.append({"step": "Refactor", "description": "Refactored code with improvements", "output": refactored_code, "code": refactored_code})
|
| 112 |
+
suggestions.append("Review the refactored code and adapt it to your style or project needs.")
|
| 113 |
+
|
| 114 |
+
# Review
|
| 115 |
+
review_prompt = (
|
| 116 |
+
f"As a senior {programming_language} developer, review the refactored code. "
|
| 117 |
+
f"Give constructive feedback on strengths, weaknesses, performance, security, and improvements in {explanation_language}:\\n\\n{refactored_code}"
|
| 118 |
+
)
|
| 119 |
+
review = groq_call(review_prompt)
|
| 120 |
+
timeline.append({"step": "Review", "description": "Code review and suggestions", "output": review, "code": refactored_code})
|
| 121 |
+
suggestions.append("Incorporate review feedback for cleaner, robust code.")
|
| 122 |
+
|
| 123 |
+
# Error detection & fixes
|
| 124 |
+
errors = error_detection_and_fixes(refactored_code, programming_language, skill_level, user_role, explanation_language)
|
| 125 |
+
timeline.append({"step": "Error Detection", "description": "Bugs, security, performance suggestions", "output": errors, "code": refactored_code})
|
| 126 |
+
suggestions.append("Apply fixes to improve code safety and performance.")
|
| 127 |
+
|
| 128 |
+
# Test generation
|
| 129 |
+
test_prompt = (
|
| 130 |
+
f"Write clear, effective unit tests for this {programming_language} code. "
|
| 131 |
+
f"Explain what each test does in {explanation_language}, for a {skill_level} {user_role}:\\n\\n{refactored_code}"
|
| 132 |
+
)
|
| 133 |
+
tests = groq_call(test_prompt)
|
| 134 |
+
timeline.append({"step": "Test Generation", "description": "Generated unit tests", "output": tests, "code": tests})
|
| 135 |
+
suggestions.append("Run generated tests locally to validate changes.")
|
| 136 |
+
|
| 137 |
+
return timeline, suggestions
|
| 138 |
+
|
| 139 |
+
def get_inline_diff_html(original, modified):
|
| 140 |
+
differ = difflib.HtmlDiff(tabsize=4, wrapcolumn=80)
|
| 141 |
+
html = differ.make_table(
|
| 142 |
+
original.splitlines(), modified.splitlines(),
|
| 143 |
+
"Original", "Refactored", context=True, numlines=2
|
| 144 |
+
)
|
| 145 |
+
return f'<div style="overflow-x:auto; max-height:400px;">{html}</div>'
|
| 146 |
|
| 147 |
def detect_code_type(code, programming_language):
|
| 148 |
backend_keywords = [
|
|
|
|
| 172 |
return 'frontend'
|
| 173 |
return 'unknown'
|
| 174 |
|
| 175 |
+
def code_complexity(code):
|
| 176 |
+
lines = code.count('\\n') + 1
|
| 177 |
+
functions = code.count('def ')
|
| 178 |
+
classes = code.count('class ')
|
| 179 |
+
comments = code.count('#')
|
| 180 |
+
return f"Lines: {lines}, Functions: {functions}, Classes: {classes}, Comments: {comments}"
|
| 181 |
+
|
| 182 |
def code_matches_language(code: str, language: str) -> bool:
|
| 183 |
+
code_lower = code.strip().lower()
|
| 184 |
+
language = language.lower()
|
| 185 |
+
|
| 186 |
+
patterns = {
|
| 187 |
+
"python": [
|
| 188 |
+
"def ", "class ", "import ", "from ", "try:", "except", "raise", "lambda",
|
| 189 |
+
"with ", "yield", "async ", "await", "print(", "self.", "__init__", "__name__",
|
| 190 |
+
"if __name__ == '__main__':", "#!", # shebang for executable scripts
|
| 191 |
+
],
|
| 192 |
+
"c++": [
|
| 193 |
+
"#include", "int main(", "std::", "::", "cout <<", "cin >>", "new ", "delete ",
|
| 194 |
+
"try {", "catch(", "template<", "using namespace", "class ", "struct ", "#define",
|
| 195 |
+
],
|
| 196 |
+
"java": [
|
| 197 |
+
"package ", "import java.", "public class", "private ", "protected ", "public static void main",
|
| 198 |
+
"System.out.println", "try {", "catch(", "throw new ", "implements ", "extends ",
|
| 199 |
+
"@Override", "interface ", "enum ", "synchronized ", "final ",
|
| 200 |
+
],
|
| 201 |
+
"c#": [
|
| 202 |
+
"using System", "namespace ", "class ", "interface ", "public static void Main",
|
| 203 |
+
"Console.WriteLine", "try {", "catch(", "throw ", "async ", "await ", "get;", "set;",
|
| 204 |
+
"List<", "Dictionary<", "[Serializable]", "[Obsolete]",
|
| 205 |
+
],
|
| 206 |
+
"javascript": [
|
| 207 |
+
"function ", "const ", "let ", "var ", "document.", "window.", "console.log",
|
| 208 |
+
"if(", "for(", "while(", "switch(", "try {", "catch(", "export ", "import ", "async ",
|
| 209 |
+
"await ", "=>", "this.", "class ", "prototype", "new ", "$(",
|
| 210 |
+
],
|
| 211 |
+
"typescript": [
|
| 212 |
+
"function ", "const ", "let ", "interface ", "type ", ": string", ": number", ": boolean",
|
| 213 |
+
"implements ", "extends ", "enum ", "public ", "private ", "protected ", "readonly ",
|
| 214 |
+
"import ", "export ", "console.log", "async ", "await ", "=>", "this.",
|
| 215 |
+
],
|
| 216 |
+
"html": [
|
| 217 |
+
"<!doctype html", "<html", "<head>", "<body>", "<script", "<style", "<meta ", "<link ",
|
| 218 |
+
"<title>", "<div", "<span", "<p>", "<h1>", "<ul>", "<li>", "<form", "<input", "<button",
|
| 219 |
+
"<table", "<footer", "<header", "<section", "<article", "<nav", "<img", "<a ", "</html>",
|
| 220 |
+
],
|
| 221 |
+
}
|
| 222 |
|
| 223 |
+
match_patterns = patterns.get(language, [])
|
| 224 |
+
match_count = sum(1 for pattern in match_patterns if pattern in code_lower)
|
| 225 |
+
return match_count >= 1
|
| 226 |
|
| 227 |
+
# --- Blackbox Agent Chat History (Session-only) ---
|
| 228 |
+
if 'blackbox_chat_history' not in st.session_state:
|
| 229 |
+
st.session_state['blackbox_chat_history'] = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
|
| 231 |
+
def add_to_blackbox_history(prompt, response, mode):
|
| 232 |
+
st.session_state['blackbox_chat_history'].append({
|
| 233 |
+
'mode': mode, # 'workflow' or 'semantic_search'
|
| 234 |
+
'prompt': prompt,
|
| 235 |
+
'response': response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
})
|
|
|
|
| 237 |
|
| 238 |
+
def show_blackbox_history():
|
| 239 |
+
st.sidebar.markdown('---')
|
| 240 |
+
st.sidebar.subheader('๐ Blackbox Agent Chat History')
|
| 241 |
+
if not st.session_state['blackbox_chat_history']:
|
| 242 |
+
st.sidebar.info('No chat history this session.')
|
| 243 |
+
else:
|
| 244 |
+
for i, entry in enumerate(reversed(st.session_state['blackbox_chat_history'])):
|
| 245 |
+
with st.sidebar.expander(f"{entry['mode'].replace('_', ' ').title()} #{len(st.session_state['blackbox_chat_history'])-i}"):
|
| 246 |
+
st.markdown(f"**Prompt:**\\n{entry['prompt']}")
|
| 247 |
+
st.markdown(f"**Response:**\\n{entry['response']}")
|
| 248 |
+
|
| 249 |
+
# Show chat history in sidebar
|
| 250 |
+
show_blackbox_history()
|
| 251 |
+
|
| 252 |
+
# --- Sidebar ---
|
| 253 |
+
st.sidebar.title("๐ง Configuration")
|
| 254 |
+
lang = st.sidebar.selectbox("Programming Language", ["Python", "JavaScript", "C++", "Java", "C#", "TypeScript"])
|
| 255 |
+
skill = st.sidebar.selectbox("Skill Level", ["Beginner", "Intermediate", "Expert"])
|
| 256 |
+
role = st.sidebar.selectbox("Your Role", ["Student", "Frontend Developer", "Backend Developer", "Data Scientist"])
|
| 257 |
+
explain_lang = st.sidebar.selectbox("Explanation Language", ["English", "Spanish", "Chinese", "Urdu"])
|
| 258 |
+
st.sidebar.markdown("---")
|
| 259 |
+
st.sidebar.markdown("<span style='color:#fff;'>Powered by <b>BLACKBOX.AI</b></span>", unsafe_allow_html=True)
|
| 260 |
+
|
| 261 |
+
tabs = st.tabs(["๐ง Full AI Workflow", "๐ Semantic Search"])
|
| 262 |
+
|
| 263 |
+
# --- Tab 1: Full AI Workflow ---
|
| 264 |
+
with tabs[0]:
|
| 265 |
+
st.title("๐ง Full AI Workflow")
|
| 266 |
+
file_types = {
|
| 267 |
+
"Python": ["py"],
|
| 268 |
+
"JavaScript": ["js"],
|
| 269 |
+
"C++": ["cpp", "h", "hpp"],
|
| 270 |
+
"Java": ["java"],
|
| 271 |
+
"C#": ["cs"],
|
| 272 |
+
"TypeScript": ["ts"],
|
| 273 |
+
}
|
| 274 |
|
| 275 |
+
uploaded_file = st.file_uploader(
|
| 276 |
+
f"Upload {', '.join(file_types.get(lang, []))} file(s)",
|
| 277 |
+
type=file_types.get(lang, None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 278 |
)
|
| 279 |
+
if uploaded_file:
|
| 280 |
+
code_input = uploaded_file.read().decode("utf-8")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
else:
|
| 282 |
+
code_input = st.text_area("Your Code", height=300, placeholder="Paste your code here...")
|
| 283 |
+
|
| 284 |
+
if code_input:
|
| 285 |
+
st.markdown(f"<b>Complexity:</b> {code_complexity(code_input)}", unsafe_allow_html=True)
|
| 286 |
+
|
| 287 |
+
if st.button("Run AI Workflow"):
|
| 288 |
+
if not code_input.strip():
|
| 289 |
+
st.warning("Please paste or upload your code.")
|
| 290 |
+
elif not code_matches_language(code_input, lang):
|
| 291 |
+
st.error(f"The pasted code doesnโt look like valid {lang} code. Please check your code or select the correct language.")
|
| 292 |
+
else:
|
| 293 |
+
code_type = detect_code_type(code_input, lang)
|
| 294 |
+
if code_type == "data_science" and role != "Data Scientist":
|
| 295 |
+
st.error("Data science code detected. Please select 'Data Scientist' role.")
|
| 296 |
+
elif code_type == "frontend" and role != "Frontend Developer":
|
| 297 |
+
st.error("Frontend code detected. Please select 'Frontend Developer' role.")
|
| 298 |
+
elif code_type == "backend" and role != "Backend Developer":
|
| 299 |
+
st.error("Backend code detected. Please select 'Backend Developer' role.")
|
| 300 |
else:
|
| 301 |
+
with st.spinner("Running agentic workflow..."):
|
| 302 |
+
timeline, suggestions = agentic_workflow(code_input, skill, lang, explain_lang, role)
|
| 303 |
+
# Log to Blackbox chat history
|
| 304 |
+
add_to_blackbox_history(f"[Full Workflow] Code:\\n{code_input}", f"{timeline[-1]['output'] if timeline else ''}", mode='workflow')
|
| 305 |
+
# Show each step in an expander
|
| 306 |
+
for step in timeline:
|
| 307 |
+
with st.expander(f"โ
{step['step']} - {step['description']}"):
|
| 308 |
+
if step['step'] == "Refactor":
|
| 309 |
+
diff_html = get_inline_diff_html(code_input, step['code'])
|
| 310 |
+
st.markdown(diff_html, unsafe_allow_html=True)
|
| 311 |
+
st.code(step['output'], language=lang.lower())
|
| 312 |
+
else:
|
| 313 |
+
st.markdown(step['output'])
|
| 314 |
+
|
| 315 |
+
st.markdown("#### Agent Suggestions")
|
| 316 |
+
for s in suggestions:
|
| 317 |
+
st.markdown(f"- {s}")
|
| 318 |
+
|
| 319 |
+
# Download buttons after suggestions
|
| 320 |
+
st.markdown("---")
|
| 321 |
+
st.markdown("### ๐ฅ Download Results")
|
| 322 |
+
|
| 323 |
+
report_text = ""
|
| 324 |
+
for step in timeline:
|
| 325 |
+
report_text += f"## {step['step']}\\n{step['description']}\\n\\n{step['output']}\\n\\n"
|
| 326 |
+
|
| 327 |
+
st.download_button(
|
| 328 |
+
label="๐ Download Full Workflow Report",
|
| 329 |
+
data=report_text,
|
| 330 |
+
file_name="ai_workflow_report.txt",
|
| 331 |
+
mime="text/plain",
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
# --- Tab 2: Semantic Search ---
|
| 335 |
+
with tabs[1]:
|
| 336 |
+
st.title("๐ Semantic Search")
|
| 337 |
+
sem_code = st.text_area("Your Code", height=300, placeholder="Paste your code...")
|
| 338 |
+
sem_q = st.text_input("Your Question", placeholder="E.g., What does this function do?")
|
| 339 |
+
if st.button("Run Semantic Search"):
|
| 340 |
+
if not sem_code.strip() or not sem_q.strip():
|
| 341 |
+
st.warning("Code and question required.")
|
| 342 |
+
else:
|
| 343 |
+
with st.spinner("Running semantic search..."):
|
| 344 |
+
answer = semantic_search_improved(sem_code, sem_q, lang, skill, role, explain_lang)
|
| 345 |
+
# Log to Blackbox chat history
|
| 346 |
+
add_to_blackbox_history(f"[Semantic Search] Q: {sem_q}\\nCode:\\n{sem_code}", answer, mode='semantic_search')
|
| 347 |
+
st.markdown("### ๐ Answer")
|
| 348 |
+
st.markdown(answer)
|
| 349 |
+
|
| 350 |
+
st.markdown("---")
|