Spaces:
Sleeping
Sleeping
File size: 27,681 Bytes
2dab4a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 |
import streamlit as st
import os
import requests
import hashlib
from typing import List, Dict, Any
from datetime import datetime
import json
import re
from urllib.parse import quote
import time
import random
import markdown
# Import required libraries
from crewai import Agent, Task, Crew, Process
from crewai.tools import BaseTool
from groq import Groq
import nltk
from textstat import flesch_reading_ease, flesch_kincaid_grade
from bs4 import BeautifulSoup
import concurrent.futures
from duckduckgo_search import DDGS
# Download NLTK data
try:
nltk.download('punkt', quiet=True)
nltk.download('stopwords', quiet=True)
nltk.download('wordnet', quiet=True)
except:
pass
# Custom Tools for Academic Research and Writing
class AcademicResearchTool(BaseTool):
name: str = "academic_research"
description: str = "Conduct comprehensive academic research for thesis/synopsis"
def _run(self, topic: str, research_areas: str) -> str:
"""Conduct thorough academic research"""
try:
time.sleep(1)
# Create multiple search queries for comprehensive research
search_queries = [
f"{topic} research studies",
f"{topic} academic papers",
f"{topic} recent developments",
f"{topic} methodology",
f"{topic} literature review"
]
all_research = []
with DDGS() as ddgs:
for query in search_queries:
try:
results = list(ddgs.text(query, max_results=6))
for result in results:
all_research.append({
'query': query,
'title': result.get('title', ''),
'content': result.get('body', ''),
'url': result.get('href', ''),
'relevance_score': self._calculate_relevance(result.get('body', ''), topic)
})
time.sleep(0.5) # Rate limiting
except Exception as e:
continue
# Sort by relevance and remove duplicates
unique_research = self._remove_duplicates(all_research)
unique_research.sort(key=lambda x: x['relevance_score'], reverse=True)
return json.dumps(unique_research[:15]) # Top 15 most relevant sources
except Exception as e:
return f"Research failed: {str(e)}"
def _calculate_relevance(self, content: str, topic: str) -> float:
"""Calculate relevance score for research content"""
topic_words = set(topic.lower().split())
content_words = set(content.lower().split())
if not topic_words or not content_words:
return 0.0
intersection = topic_words.intersection(content_words)
return len(intersection) / len(topic_words)
def _remove_duplicates(self, research_list: List[Dict]) -> List[Dict]:
"""Remove duplicate research entries"""
seen_urls = set()
unique_research = []
for item in research_list:
if item['url'] not in seen_urls:
seen_urls.add(item['url'])
unique_research.append(item)
return unique_research
class CitationGeneratorTool(BaseTool):
name: str = "citation_generator"
description: str = "Generate proper academic citations and references"
def _run(self, research_data: str) -> str:
"""Generate academic citations from research data"""
try:
research_items = json.loads(research_data)
citations = []
for i, item in enumerate(research_items[:10]): # Top 10 sources
# Generate citation in APA format
title = item.get('title', 'Unknown Title')
url = item.get('url', '')
# Extract domain for author/organization
domain = url.split('/')[2] if len(url.split('/')) > 2 else 'Unknown'
citation = {
'id': f"source_{i+1}",
'title': title,
'url': url,
'domain': domain,
'apa_citation': f"{domain}. ({datetime.now().year}). {title}. Retrieved from {url}",
'in_text': f"({domain}, {datetime.now().year})"
}
citations.append(citation)
return json.dumps(citations)
except Exception as e:
return f"Citation generation failed: {str(e)}"
class AcademicWritingTool(BaseTool):
name: str = "academic_writing"
description: str = "Analyze and improve academic writing style"
def _run(self, text: str, academic_level: str) -> str:
"""Analyze academic writing quality and suggest improvements"""
try:
# Calculate academic writing metrics
flesch_score = flesch_reading_ease(text)
fk_grade = flesch_kincaid_grade(text)
# Analyze sentence structure
sentences = text.split('.')
sentence_lengths = [len(s.split()) for s in sentences if s.strip()]
avg_sentence_length = sum(sentence_lengths) / max(len(sentence_lengths), 1)
# Check for academic writing patterns
academic_patterns = [
"furthermore", "moreover", "additionally", "consequently",
"therefore", "thus", "hence", "accordingly", "subsequently"
]
pattern_usage = sum(1 for pattern in academic_patterns if pattern in text.lower())
# Academic level guidelines
level_guidelines = {
'undergraduate': {
'target_flesch': 60-80,
'target_grade': 12-14,
'sentence_length': 15-25
},
'masters': {
'target_flesch': 50-70,
'target_grade': 14-16,
'sentence_length': 18-30
},
'phd': {
'target_flesch': 40-60,
'target_grade': 16-18,
'sentence_length': 20-35
}
}
guidelines = level_guidelines.get(academic_level, level_guidelines['masters'])
analysis = {
'flesch_score': flesch_score,
'fk_grade': fk_grade,
'avg_sentence_length': avg_sentence_length,
'academic_patterns_used': pattern_usage,
'target_guidelines': guidelines,
'suggestions': []
}
# Generate suggestions
if flesch_score > guidelines['target_flesch'][1]:
analysis['suggestions'].append("Consider more complex sentence structures for academic tone")
if avg_sentence_length < guidelines['sentence_length'][0]:
analysis['suggestions'].append("Use longer, more detailed sentences")
if pattern_usage < 3:
analysis['suggestions'].append("Include more academic transition phrases")
return json.dumps(analysis)
except Exception as e:
return f"Academic analysis failed: {str(e)}"
class HumanizationTool(BaseTool):
name: str = "humanization_tool"
description: str = "Make academic writing sound more human and less AI-like"
def _run(self, text: str) -> str:
"""Apply humanization techniques to academic writing"""
try:
# Common AI patterns in academic writing
ai_patterns = [
"It is important to note that",
"This demonstrates that",
"This indicates that",
"As previously mentioned",
"It should be mentioned that",
"This suggests that",
"This implies that",
"It can be concluded that"
]
# Human alternatives
human_alternatives = [
"Notably,",
"This shows",
"This reveals",
"As noted earlier",
"It's worth noting",
"This suggests",
"This implies",
"Therefore,"
]
# Apply replacements
humanized_text = text
for ai_pattern, human_alt in zip(ai_patterns, human_alternatives):
humanized_text = humanized_text.replace(ai_pattern, human_alt)
# Add natural variations
variations = [
"Interestingly,",
"Surprisingly,",
"Remarkably,",
"Significantly,",
"Importantly,"
]
# Insert variations at appropriate places
sentences = humanized_text.split('.')
for i in range(1, len(sentences), 3): # Every 3rd sentence
if i < len(sentences) and sentences[i].strip():
variation = random.choice(variations)
sentences[i] = f" {variation} {sentences[i].lstrip()}"
humanized_text = '.'.join(sentences)
# Add personal insights (subtle)
personal_insights = [
"Based on the available evidence,",
"From the research findings,",
"Considering the data,",
"In light of these results,"
]
# Insert personal insights
if len(sentences) > 5:
insight = random.choice(personal_insights)
sentences[2] = f" {insight} {sentences[2].lstrip()}"
return '.'.join(sentences)
except Exception as e:
return f"Humanization failed: {str(e)}"
# Rate limit handling decorator
def rate_limit_handler(max_retries=3, base_delay=2):
def decorator(func):
def wrapper(*args, **kwargs):
for attempt in range(max_retries):
try:
return func(*args, **kwargs)
except Exception as e:
if "rate_limit" in str(e).lower() and attempt < max_retries - 1:
delay = base_delay * (2 ** attempt) + random.uniform(0, 1)
st.warning(f"Rate limit hit. Retrying in {delay:.1f} seconds... (Attempt {attempt + 1}/{max_retries})")
time.sleep(delay)
else:
raise e
return None
return wrapper
return decorator
# Custom LLM class for CrewAI with built-in API
import os
from langchain.llms.base import LLM
from typing import Optional, List, Mapping, Any
import litellm
class BuiltInLLM(LLM):
model_name: str = "groq/llama-3.3-70b-versatile"
def __init__(self):
super().__init__()
# Built-in API key (you can replace this with your own)
self.api_key = "API_KEY" # Replace with actual key
os.environ["GROQ_API_KEY"] = self.api_key
litellm.set_verbose = False
@property
def _llm_type(self) -> str:
return "groq"
@rate_limit_handler(max_retries=3, base_delay=2)
def _call(self, prompt: str, stop: Optional[List[str]] = None, **kwargs) -> str:
"""Call API with rate limiting"""
try:
# Handle longer prompts for thesis writing
if len(prompt.split()) > 1500:
words = prompt.split()
prompt = ' '.join(words[:1500]) + "..."
response = litellm.completion(
model=self.model_name,
messages=[
{"role": "system", "content": "You are an expert academic writer who creates sophisticated, well-researched thesis documents that sound completely human-written. You avoid AI patterns and create authentic academic content with proper citations and natural flow."},
{"role": "user", "content": prompt}
],
max_tokens=2500,
temperature=0.6, # Balanced creativity and consistency
top_p=0.9,
api_key=self.api_key
)
time.sleep(2)
return response.choices[0].message.content
except Exception as e:
st.error(f"Error in processing: {str(e)}")
return f"Error: {str(e)}"
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {"model_name": self.model_name}
# Specialized agents for thesis writing
def create_thesis_agents(llm):
"""Create specialized agents for thesis/synopsis writing"""
# Research Agent
research_agent = Agent(
role="Academic Research Specialist",
goal="Conduct comprehensive academic research and gather credible sources",
backstory="You are a PhD-level researcher with expertise in finding and analyzing academic sources. You understand how to identify credible information and synthesize research findings.",
tools=[AcademicResearchTool()],
verbose=True,
allow_delegation=False,
llm=llm
)
# Thesis Writer Agent
thesis_writer = Agent(
role="Academic Thesis Writer",
goal="Write sophisticated thesis documents that sound completely human-written",
backstory="You are an experienced academic writer who specializes in creating thesis documents. You know how to write in a way that sounds natural and scholarly, avoiding AI patterns while maintaining academic rigor.",
tools=[AcademicWritingTool(), CitationGeneratorTool()],
verbose=True,
allow_delegation=False,
llm=llm
)
# Humanization Agent
humanization_agent = Agent(
role="Academic Writing Humanizer",
goal="Make academic writing sound completely human and undetectable",
backstory="You are an expert editor who specializes in making academic content sound natural and human-written. You know how to eliminate AI patterns and create authentic scholarly writing.",
tools=[HumanizationTool()],
verbose=True,
allow_delegation=False,
llm=llm
)
return research_agent, thesis_writer, humanization_agent
def create_thesis_tasks(topic, document_type, academic_level, research_areas, word_count, agents):
"""Create tasks for thesis/synopsis writing"""
research_agent, thesis_writer, humanization_agent = agents
# Task 1: Comprehensive Research
research_task = Task(
description=f"""
Conduct comprehensive academic research for a {document_type} on "{topic}".
Research Areas: {research_areas}
Academic Level: {academic_level}
Target Length: {word_count} words
Requirements:
- Find 10-15 credible academic sources
- Gather recent research and developments
- Identify key theories and methodologies
- Note different perspectives and debates
- Focus on peer-reviewed and scholarly sources
- Include both theoretical and practical aspects
Provide a detailed research summary with key findings, methodologies, and source analysis.
""",
agent=research_agent,
expected_output="Comprehensive research summary with credible sources and key insights"
)
# Task 2: Thesis Writing
thesis_task = Task(
description=f"""
Write a complete {document_type} on "{topic}" that sounds completely human-written.
Academic Level: {academic_level}
Target Length: {word_count} words
Research Areas: {research_areas}
Requirements:
- Use the comprehensive research provided
- Write in proper academic style for {academic_level} level
- Include proper citations and references
- Create logical structure with introduction, body, and conclusion
- Use varied sentence structures and academic vocabulary
- Include critical analysis and original insights
- Maintain scholarly tone while sounding natural
- Avoid AI-like patterns and formal robotic language
- Include methodology, findings, and implications
- Make it engaging and intellectually rigorous
Structure:
1. Introduction and background
2. Literature review
3. Methodology
4. Analysis and findings
5. Discussion and implications
6. Conclusion and recommendations
Important: Write as if you're a human academic expert sharing original research and insights.
""",
agent=thesis_writer,
expected_output="Complete academic thesis document with proper structure and citations",
dependencies=[research_task]
)
# Task 3: Humanization and Polish
humanization_task = Task(
description=f"""
Polish and humanize the thesis document to make it completely undetectable as AI-written.
Requirements:
- Remove any remaining AI patterns
- Improve natural academic flow
- Add authentic human writing touches
- Ensure varied sentence structures
- Make transitions feel natural and scholarly
- Add subtle personal insights and critical thinking
- Maintain academic rigor while sounding human
- Improve readability without losing sophistication
- Ensure proper citation integration
- Make it sound like expert human academic writing
Focus on making it indistinguishable from high-quality human academic writing.
""",
agent=humanization_agent,
expected_output="Final polished human-sounding academic thesis document",
dependencies=[thesis_task]
)
return [research_task, thesis_task, humanization_task]
def run_thesis_writer(topic, document_type, academic_level, research_areas, word_count):
"""Run the thesis writing process"""
try:
# Initialize LLM
llm = BuiltInLLM()
# Create agents
agents = create_thesis_agents(llm)
# Create tasks
tasks = create_thesis_tasks(topic, document_type, academic_level, research_areas, word_count, agents)
# Create crew
crew = Crew(
agents=list(agents),
tasks=tasks,
process=Process.sequential,
verbose=True
)
# Execute with progress tracking
with st.spinner("Creating comprehensive thesis document with AI agents..."):
result = crew.kickoff()
return result
except Exception as e:
st.error(f"Error in thesis writing: {str(e)}")
return None
# Streamlit UI
def main():
st.set_page_config(
page_title="Thesis Writer Bot - Academic Document Creator",
page_icon="π",
layout="wide"
)
st.title("π Thesis Writer Bot")
st.markdown("*Create sophisticated, human-like thesis and synopsis documents that pass any AI detection*")
# Sidebar configuration
with st.sidebar:
st.header("βΉοΈ About")
st.success("β
Ready to generate your thesis!")
st.markdown("---")
st.markdown("### π― What This Tool Does")
st.markdown("- Creates original, human-like thesis documents")
st.markdown("- Conducts comprehensive academic research")
st.markdown("- Generates proper citations and references")
st.markdown("- Ensures content passes AI detection")
st.markdown("- No plagiarism - completely original content")
st.markdown("---")
st.markdown("### π Document Types")
st.markdown("- **Thesis**: Complete research thesis")
st.markdown("- **Synopsis**: Research proposal/synopsis")
st.markdown("- **Dissertation**: PhD-level document")
st.markdown("- **Research Paper**: Academic paper")
st.markdown("- **Literature Review**: Comprehensive review")
st.markdown("---")
st.markdown("### π Academic Levels")
st.markdown("- **Undergraduate**: Bachelor's level")
st.markdown("- **Masters**: Graduate level")
st.markdown("- **PhD**: Doctoral level")
st.markdown("---")
st.markdown("### π₯ Features")
st.markdown("- **No Plagiarism**: Original research")
st.markdown("- **Human-like**: Natural academic writing")
st.markdown("- **AI Undetectable**: Passes detection")
st.markdown("- **Proper Citations**: Academic references")
st.markdown("- **Research-based**: Credible sources")
st.markdown("- **No Word Limits**: Any length needed")
# Main content area
col1, col2 = st.columns([1, 1])
with col1:
st.header("π Thesis Request")
# Topic input
topic = st.text_input(
"What is your thesis/synopsis topic?",
placeholder="e.g., Impact of artificial intelligence on healthcare delivery systems"
)
# Document type selection
document_types = [
"Thesis", "Synopsis", "Dissertation", "Research Paper",
"Literature Review", "Research Proposal", "Academic Report"
]
document_type = st.selectbox("Document Type", document_types)
# Academic level
academic_levels = ["Undergraduate", "Masters", "PhD"]
academic_level = st.selectbox("Academic Level", academic_levels)
# Research areas
research_areas = st.text_area(
"Specific Research Areas/Focus (Optional)",
placeholder="e.g., methodology, recent developments, case studies, theoretical frameworks...",
height=80
)
# Word count (no limit)
word_count = st.number_input(
"Target Word Count",
min_value=1000,
max_value=50000,
value=5000,
step=500,
help="No strict limit - write as much as needed"
)
# Additional requirements
additional_requirements = st.text_area(
"Additional Requirements (Optional)",
placeholder="Specific methodology, theoretical framework, case studies, etc...",
height=100
)
# Generate button
if st.button("π Generate Thesis Document", type="primary", use_container_width=True):
if not topic.strip():
st.error("Please enter a thesis topic!")
else:
# Prepare research areas
research_areas_text = research_areas if research_areas.strip() else "general academic research"
# Run thesis generation
result = run_thesis_writer(topic, document_type, academic_level, research_areas_text, word_count)
if result:
st.session_state.generated_thesis = result
st.session_state.thesis_info = {
'topic': topic,
'type': document_type,
'level': academic_level,
'research_areas': research_areas_text,
'word_count': word_count,
'requirements': additional_requirements
}
st.success("β
Thesis document generated successfully!")
with col2:
st.header("π Generated Thesis")
if "generated_thesis" in st.session_state:
thesis = st.session_state.generated_thesis
info = st.session_state.thesis_info
# Display thesis info
st.subheader("π Document Information")
col_info1, col_info2 = st.columns(2)
with col_info1:
st.metric("Topic", info['topic'])
st.metric("Type", info['type'])
st.metric("Level", info['level'])
with col_info2:
st.metric("Generated Words", len(str(thesis).split()))
st.metric("Research Areas", info['research_areas'][:20] + "..." if len(info['research_areas']) > 20 else info['research_areas'])
st.metric("Quality", "β
Human-like")
# Display the thesis
st.subheader("π Your Thesis Document")
# Format the thesis nicely
formatted_thesis = str(thesis)
st.text_area(
"Generated Thesis:",
value=formatted_thesis,
height=400,
help="This is your human-like thesis document"
)
# Download options
col_dl1, col_dl2 = st.columns(2)
with col_dl1:
st.download_button(
label="π₯ Download as TXT",
data=formatted_thesis,
file_name=f"{info['topic'].replace(' ', '_')}_{info['type']}.txt",
mime="text/plain"
)
with col_dl2:
# Create markdown version with academic formatting
markdown_content = f"""# {info['topic']}
**Document Type:** {info['type']}
**Academic Level:** {info['level']}
**Research Areas:** {info['research_areas']}
**Word Count:** {len(str(thesis).split())}
**Generated:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
---
{formatted_thesis}
---
*This document was generated using advanced AI technology and is designed to be indistinguishable from human academic writing.*
"""
st.download_button(
label="π₯ Download as MD",
data=markdown_content,
file_name=f"{info['topic'].replace(' ', '_')}_{info['type']}.md",
mime="text/markdown"
)
# Document analysis
st.subheader("π Document Analysis")
# Quick stats
actual_words = len(str(thesis).split())
actual_sentences = len(str(thesis).split('.'))
paragraphs = len(str(thesis).split('\n\n'))
col_stats1, col_stats2, col_stats3 = st.columns(3)
with col_stats1:
st.metric("Words", actual_words)
with col_stats2:
st.metric("Sentences", actual_sentences)
with col_stats3:
st.metric("Paragraphs", paragraphs)
# Academic quality indicators
st.success("β
Document optimized for academic writing")
st.info("π‘ This thesis is designed to pass AI detection tools and academic scrutiny")
st.warning("β οΈ Remember to review and customize the content for your specific requirements")
# Remove technical details
st.markdown("---")
st.markdown("### π Privacy & Security")
st.markdown("- Your content is processed securely")
st.markdown("- No data is stored or shared")
st.markdown("- All research is conducted privately")
else:
st.info("π Enter a thesis topic and click 'Generate Thesis Document' to create your academic content")
if __name__ == "__main__":
main() |