Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
import torch | |
from transformers import AutoProcessor, MusicgenForConditionalGeneration | |
import numpy as np # Import numpy | |
# Load emotion classifier | |
emotion_classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True) | |
# Load music generator (small for CPU) | |
music_model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small") | |
processor = AutoProcessor.from_pretrained("facebook/musicgen-small") | |
# Map emotion to style/genre prompts | |
EMOTION_TO_MUSIC = { | |
"joy": "happy upbeat piano melody", | |
"anger": "intense aggressive drums", | |
"sadness": "slow emotional violin", | |
"fear": "dark ambient synth", | |
"love": "soft romantic acoustic guitar", | |
"surprise": "quirky playful tune", | |
"neutral": "chill background lofi beat" | |
} | |
# Main generation function | |
def generate_music(user_input): | |
# Step 1: Detect emotion | |
emotion_scores = emotion_classifier(user_input)[0] | |
top_emotion = max(emotion_scores, key=lambda x: x["score"])["label"] | |
# Step 2: Generate prompt | |
music_prompt = EMOTION_TO_MUSIC.get(top_emotion.lower(), "ambient melody") | |
# Step 3: Generate music | |
inputs = processor(text=[music_prompt], return_tensors="pt") | |
audio_values = music_model.generate(**inputs, max_new_tokens=1024) | |
# Convert audio tensor to numpy array | |
audio_array = audio_values[0].cpu().numpy() | |
# --- FIX START --- | |
# Normalize the audio array to be within the range of a 16-bit PCM WAV file | |
# The default sampling rate for musicgen-small is 16000 Hz, and Gradio expects | |
# values to be scaled for 16-bit integers if not float. | |
# We'll normalize to -1 to 1 for float and let Gradio handle the 16-bit conversion. | |
# However, to be extra safe, ensure max amplitude is 1.0. | |
audio_array = audio_array / np.max(np.abs(audio_array)) | |
# --- FIX END --- | |
# Return result | |
# The Musicgen model outputs audio at a sampling rate of 16kHz | |
sampling_rate = 16000 | |
return f"Top Emotion: {top_emotion}", (sampling_rate, audio_array) | |
# Gradio UI | |
with gr.Blocks() as demo: | |
gr.Markdown("# Emotion-to-Music AI") | |
gr.Markdown("Describe how you feel and get a unique music track matching your mood!") | |
with gr.Row(): | |
text_input = gr.Textbox(label="How are you feeling?") | |
generate_btn = gr.Button("Generate Music") | |
with gr.Row(): | |
emotion_output = gr.Textbox(label="Detected Emotion") | |
audio_output = gr.Audio(label="Generated Music", type="numpy") # type="numpy" is correct here | |
generate_btn.click(fn=generate_music, inputs=text_input, outputs=[emotion_output, audio_output]) | |
demo.launch() | |