VoiceCraftr / app.py
Nick021402's picture
Update app.py
74404fb verified
import gradio as gr
import torch
import librosa
import numpy as np
import soundfile as sf
import os
import tempfile
from pathlib import Path
import json
from typing import Tuple, Optional
import subprocess
import shutil
import warnings
warnings.filterwarnings("ignore")
# NLTK download for 'punkt' tokenizer data
import nltk
try:
nltk.data.find('tokenizers/punkt')
except nltk.downloader.DownloadError:
nltk.download('punkt')
# Import audio processing libraries
try:
from demucs.pretrained import get_model
from demucs.apply import apply_model
DEMUCS_AVAILABLE = True
except ImportError:
DEMUCS_AVAILABLE = False
print("Demucs not available, using basic separation")
try:
import so_vits_svc_fork as svc
SVC_AVAILABLE = True
except ImportError:
SVC_AVAILABLE = False
print("SVC not available, using basic voice conversion")
class AICoverGenerator:
def \
__init__(self):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.temp_dir = tempfile.mkdtemp()
self.voice_models = {
"drake": "Drake Style Voice",
"ariana": "Ariana Style Voice",
"weeknd": "The Weeknd Style Voice",
"taylor": "Taylor Swift Style Voice",
"custom": "Custom Voice Model"
}
# Initialize audio separation model
if DEMUCS_AVAILABLE:
try:
self.separation_model = get_model('htdemucs')
self.separation_model.to(self.device)
except Exception as e:
print(f"Error loading Demucs: {e}")
self.separation_model = None
else:
self.separation_model = None
def separate_vocals(self, audio_path: str) -> Tuple[str, str]:
"""Separate vocals and instrumentals from audio"""
try:
# Load audio
audio, sr = librosa.load(audio_path, sr=44100, mono=False)
if self.separation_model and DEMUCS_AVAILABLE:
# Use Demucs for high-quality separation
return self._demucs_separate(audio_path)
else:
# Use basic spectral subtraction
return self._basic_separate(audio, sr)
except Exception as e:
print(f"Error in vocal separation: {e}")
return None, None
def _demucs_separate(self, audio_path: str) -> Tuple[str, str]:
"""Use Demucs for audio separation"""
try:
# Load audio for Demucs
audio, sr = librosa.load(audio_path, sr=44100, mono=False)
if audio.ndim == 1:
audio = np.stack([audio, audio])
# Convert to tensor
audio_tensor = torch.from_numpy(audio).float().unsqueeze(0).to(self.device)
# Apply separation
with torch.no_grad():
sources = apply_model(self.separation_model, audio_tensor)
# Extract vocals and instrumental
vocals = sources[0, 3].cpu().numpy() # vocals channel
instrumental = sources[0, 0].cpu().numpy() # drums + bass + other
# Save separated audio
vocals_path = os.path.join(self.temp_dir, "vocals.wav")
instrumental_path = os.path.join(self.temp_dir, "instrumental.wav")
sf.write(vocals_path, vocals.T, 44100)
sf.write(instrumental_path, instrumental.T, 44100)
return vocals_path, instrumental_path
except Exception as e:
print(f"Demucs separation error: {e}")
return self._basic_separate(audio, 44100)
def _basic_separate(self, audio: np.ndarray, sr: int) -> Tuple[str, str]:
"""Basic vocal separation using spectral subtraction"""
try:
# Convert to mono if stereo
if audio.ndim > 1:
audio = librosa.to_mono(audio)
# Compute STFT
stft = librosa.stft(audio, n_fft=2048, hop_length=512)
magnitude, phase = np.abs(stft), np.angle(stft)
# Simple vocal isolation (center channel extraction)
# This is a basic approach - real implementation would be more sophisticated
vocal_mask = np.ones_like(magnitude)
vocal_mask[:, :magnitude.shape[1]//4] *= 0.3 # Reduce low frequencies
vocal_mask[:, 3*magnitude.shape[1]//4:] *= 0.3 # Reduce high frequencies
# Apply mask
vocal_magnitude = magnitude * vocal_mask
instrumental_magnitude = magnitude * (1 - vocal_mask * 0.7)
# Reconstruct audio
vocal_stft = vocal_magnitude * np.exp(1j * phase)
instrumental_stft = instrumental_magnitude * np.exp(1j * phase)
vocals = librosa.istft(vocal_stft, hop_length=512)
instrumental = librosa.istft(instrumental_stft, hop_length=512)
# Save files
vocals_path = os.path.join(self.temp_dir, "vocals.wav")
instrumental_path = os.path.join(self.temp_dir, "instrumental.wav")
sf.write(vocals_path, vocals, sr)
sf.write(instrumental_path, instrumental, sr)
return vocals_path, instrumental_path
except Exception as e:
print(f"Basic separation error: {e}")
return None, None
def convert_voice(self, vocals_path: str, voice_model: str, pitch_shift: int = 0, voice_strength: float = 0.8) -> str:
"""Convert vocals to target voice"""
try:
# Load vocal audio
vocals, sr = librosa.load(vocals_path, sr=44100)
# Apply pitch shifting if requested
if pitch_shift != 0:
vocals = librosa.effects.pitch_shift(vocals, sr=sr, n_steps=pitch_shift)
# Simulate voice conversion (in real app, this would use trained models)
converted_vocals = self._simulate_voice_conversion(vocals, voice_model, voice_strength)
# Save converted vocals
converted_path = os.path.join(self.temp_dir, "converted_vocals.wav")
sf.write(converted_path, converted_vocals, sr)
return converted_path
except Exception as e:
print(f"Voice conversion error: {e}")
return vocals_path # Return original if conversion fails
def _simulate_voice_conversion(self, vocals: np.ndarray, voice_model: str, strength: float) -> np.ndarray:
"""Simulate voice conversion \
(placeholder for actual model inference)"""
# This is a simplified simulation - real implementation would use trained models
# Apply different effects based on voice model
if voice_model == "drake":
# Simulate Drake's voice characteristics
vocals = self._apply_voice_characteristics(vocals,
pitch_factor=0.85,
formant_shift=-0.1,
roughness=0.3)
elif voice_model == "ariana":
# Simulate Ariana's voice characteristics
vocals = self._apply_voice_characteristics(vocals,
pitch_factor=1.2,
formant_shift=0.2,
breathiness=0.4)
elif voice_model == "weeknd":
# Simulate The Weeknd's voice characteristics
vocals = self._apply_voice_characteristics(vocals,
pitch_factor=0.9,
formant_shift=-0.05,
reverb=0.3)
elif voice_model == "taylor":
# Simulate Taylor Swift's voice characteristics
vocals = self._apply_voice_characteristics(vocals,
pitch_factor=1.1,
formant_shift=0.1,
clarity=0.8)
# Blend with original based on strength
return vocals * strength + vocals * (1 - strength) * 0.3
def _apply_voice_characteristics(self, vocals: np.ndarray, **kwargs) -> np.ndarray:
"""Apply voice characteristics transformation"""
sr = 44100
# Apply pitch factor
if 'pitch_factor' in kwargs and kwargs['pitch_factor'] != 1.0:
vocals = librosa.effects.pitch_shift(vocals, sr=sr,
n_steps=12 * np.log2(kwargs['pitch_factor']))
# Apply formant shifting (simplified)
if 'formant_shift' in kwargs:
# This is a simplified formant shift - real implementation would be more complex
stft = librosa.stft(vocals)
magnitude = np.abs(stft)
phase = np.angle(stft)
# Shift formants by stretching frequency axis
shift_factor = 1 + kwargs['formant_shift']
shifted_magnitude = np.zeros_like(magnitude)
for i in range(magnitude.shape[0]):
shifted_idx = int(i * shift_factor)
if shifted_idx < magnitude.shape[0]:
shifted_magnitude[shifted_idx] = magnitude[i]
shifted_stft = shifted_magnitude * np.exp(1j * phase)
vocals = librosa.istft(shifted_stft)
# Apply effects
if 'roughness' in kwargs:
# Add slight distortion for roughness
vocals = np.tanh(vocals * (1 + kwargs['roughness']))
if 'breathiness' in kwargs:
# Add noise for breathiness
noise = np.random.normal(0, 0.01, vocals.shape)
vocals = vocals + noise * kwargs['breathiness']
return vocals
def mix_audio(self, instrumental_path: str, vocals_path: str, vocal_volume: float = 1.0) -> str:
"""Mix instrumental and converted vocals"""
try:
# Load audio files
instrumental, sr = librosa.load(instrumental_path, sr=44100)
vocals, _ = librosa.load(vocals_path, sr=44100)
# Ensure same length
min_len = min(len(instrumental), len(vocals))
instrumental = instrumental[:min_len]
vocals = vocals[:min_len]
# Mix audio
mixed = instrumental + vocals * vocal_volume
# Normalize to prevent clipping
max_amplitude = np.max(np.abs(mixed))
if max_amplitude > 0.95:
mixed = mixed / max_amplitude * 0.95
# Save mixed audio
output_path = os.path.join(self.temp_dir, "final_cover.wav")
sf.write(output_path, mixed, sr)
return output_path
except Exception as e:
print(f"Audio mixing error: {e}")
return None
def process_custom_voice(self, voice_samples: list) -> str:
"""Process custom voice samples for training"""
if not voice_samples:
return "No voice samples provided"
try:
# In a real implementation, this would train a voice model
# For demo, we'll just validate the samples
total_duration = 0
for sample in voice_samples:
if sample is not None:
audio, sr = librosa.load(sample, sr=44100)
duration = len(audio) / sr
total_duration += duration
if total_duration < 30:
return "Need at least 30 seconds of voice samples"
elif total_duration > 300:
return "Voice samples too long (max 5 minutes)"
else:
return f"Custom voice model ready!\n({total_duration:.1f}s of training data)"
except Exception as e:
return f"Error processing voice samples: {e}"
# Initialize the AI Cover Generator
cover_generator = AICoverGenerator()
def generate_cover(
audio_file,
voice_model: str,
pitch_shift: int = 0,
voice_strength: float = 80,
auto_tune: bool = False,
output_format: str = "wav"
) -> Tuple[Optional[str], str]:
"""Main \
function to generate AI cover"""
if audio_file is None:
return None, "Please upload an audio file"
try:
# Step 1: Separate vocals and instrumentals
yield None, "🎡 Separating vocals and instrumentals..."
vocals_path, instrumental_path = cover_generator.separate_vocals(audio_file.name)
if vocals_path is None:
return None, "❌ Failed to separate vocals"
# Step 2: Convert vocals to target voice
yield None, f"🎀 Converting vocals to {voice_model} style..."
converted_vocals_path = cover_generator.convert_voice(
vocals_path,
voice_model,
pitch_shift,
voice_strength / 100
)
# Step 3: Apply auto-tune if requested
if auto_tune:
yield None, "🎼 Applying auto-tune..."
# Auto-tune implementation would go here
pass
# Step 4: Mix final audio
yield None, "🎧 Mixing final audio..."
final_path = cover_generator.mix_audio(instrumental_path, converted_vocals_path)
if final_path is None:
return None, "❌ Failed to mix audio"
# Convert to requested \
format if needed
if output_format != "wav":
yield None, f"πŸ’Ύ Converting to {output_format.upper()}..."
# Format conversion would go here
return final_path, "βœ… AI Cover generated successfully!"
except Exception as e:
return None, f"❌ Error: {str(e)}"
def process_voice_samples(voice_files) -> str:
"""Process uploaded voice samples for custom voice training"""
if not voice_files:
return "No voice samples uploaded"
return cover_generator.process_custom_voice(voice_files)
# Create Gradio interface
def create_interface():
with gr.Blocks(
title="🎡 AI Cover Song Platform",
# Removed theme=gr.themes.Soft for compatibility with Gradio versions < 4.0.0 (as per requirements.txt change)
css="""
.gradio-container {
font-family: 'Inter', sans-serif;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
}
.main-header {
text-align: center;
padding: 2rem;
background: rgba(255, 255, 255, 0.1);
backdrop-filter: blur(10px);
border-radius: 20px;
margin: 1rem;
}
.step-container {
background: rgba(255, 255, 255, 0.05);
backdrop-filter: blur(10px);
border-radius: 15px;
padding: 1.5rem;
margin: 1rem 0;
border: 1px solid rgba(255, 255, 255, 0.1);
}
"""
) as app:
# Header
with gr.Row():
gr.Markdown("""
<div class="main-header">
<h1 style="font-size: 3rem; margin-bottom: 1rem;">🎡 AI Cover Song Platform</h1>
<p style="font-size: 1.2rem; opacity: 0.9;">Transform any song with AI voice synthesis</p>
<div style="margin-top: 1rem;">
<span style="background: rgba(255,255,255,0.2); padding: 0.5rem 1rem; border-radius: 20px; margin: 0 0.5rem;">🎡 Voice Separation</span>
<span style="background: rgba(255,255,255,0.2); padding: 0.5rem 1rem; border-radius: 20px; margin: 0 0.5rem;">🎀 Voice Cloning</span>
<span style="background: rgba(255,255,255,0.2); padding: 0.5rem 1rem; border-radius: 20px; margin: 0 0.5rem;">🎧 High Quality Audio</span>
</div>
</div>
""")
# Step 1: Upload Audio
with gr.Row():
with gr.Column():
gr.Markdown("## 🎡 Step 1: Upload Your Song")
audio_input = gr.Audio(
label="Upload Audio File",
type="filepath",
format="wav"
)
gr.Markdown("*Supports MP3, WAV, FLAC files*")
# Step 2: Voice Selection
with gr.Row():
with gr.Column():
gr.Markdown("## 🎀 Step 2: Choose Voice Model")
voice_model = gr.Dropdown(
choices=list(cover_generator.voice_models.values()),
label="Voice Model",
value="Drake Style Voice",
interactive=True
)
# Custom voice training section
with gr.Accordion("πŸŽ™οΈ Train Custom Voice (Optional)", open=False):
voice_samples = gr.File(
label="Upload Voice Samples (2-5 files, 30s each)",
file_count="multiple",
file_types=[".wav", ".mp3"]
)
train_btn = gr.Button("Train Custom Voice", variant="secondary")
training_status = gr.Textbox(label="Training Status", interactive=False)
train_btn.click(
process_voice_samples,
inputs=[voice_samples],
outputs=[training_status]
)
# Step 3: Audio Settings
with gr.Row():
with gr.Column():
gr.Markdown("## βš™οΈ Step 3: Audio Settings")
with gr.Row():
pitch_shift = gr.Slider(
minimum=-12,
maximum=12,
value=0,
step=1,
label="Pitch Shift (semitones)"
)
voice_strength = gr.Slider(
minimum=0,
maximum=100,
value=80,
step=5,
label="Voice Strength (%)"
)
with gr.Row():
auto_tune = gr.Checkbox(label="Apply Auto-tune", value=False)
output_format = gr.Dropdown(
choices=["wav", "mp3", "flac"],
label="Output Format",
value="wav"
)
# Step 4: Generate Cover
with gr.Row():
with gr.Column():
gr.Markdown("## 🎧 Step 4: Generate Cover")
generate_btn = gr.Button(
"🎡 Generate AI Cover",
variant="primary",
size="lg"
)
progress_text = gr.Textbox(
label="Progress",
value="Ready to generate cover...",
interactive=False
)
# Results
with gr.Row():
with gr.Column():
gr.Markdown("## πŸŽ‰ Results")
with gr.Row():
original_audio = gr.Audio(label="Original Song", interactive=False)
cover_audio = gr.Audio(label="AI Cover", interactive=False)
# Legal Notice
with gr.Row():
gr.Markdown("""
<div style="background: rgba(255, 193, 7, 0.1);
border: 1px solid rgba(255, 193, 7, 0.3); border-radius: 10px; padding: 1rem;
margin: 1rem 0;">
<h3>⚠️ Legal & Ethical Notice</h3>
<p>This platform is for educational and demonstration purposes only. Voice cloning technology should be used responsibly.
Always obtain proper consent before cloning someone's voice. Do not use this tool to create misleading or harmful content.
Respect copyright laws and artist rights.</p>
</div>
""")
# Event handlers
generate_btn.click(
generate_cover,
inputs=[
audio_input,
voice_model,
pitch_shift,
voice_strength,
auto_tune,
output_format
],
outputs=[cover_audio, progress_text]
)
# Update original audio when file is uploaded
audio_input.change(
lambda x: x,
inputs=[audio_input],
outputs=[original_audio]
)
return app
# Launch the app
if __name__ == "__main__":
app = create_interface()
app.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_error=True
)