Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,20 +7,17 @@ model_name = "NinaMwangi/T5_finbot"
|
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
model = TFAutoModelForSeq2SeqLM.from_pretrained(model_name)
|
9 |
|
10 |
-
# Load dataset
|
11 |
dataset = load_dataset("virattt/financial-qa-10K")["train"]
|
12 |
|
13 |
-
#
|
14 |
-
chat_history = []
|
15 |
-
|
16 |
-
# Context lookup
|
17 |
def get_context_for_question(question):
|
18 |
for item in dataset:
|
19 |
if item["question"].strip().lower() == question.strip().lower():
|
20 |
return item["context"]
|
21 |
return "No relevant context found."
|
22 |
|
23 |
-
#
|
24 |
def generate_answer(question):
|
25 |
context = get_context_for_question(question)
|
26 |
prompt = f"Q: {question} Context: {context} A:"
|
@@ -41,37 +38,15 @@ def generate_answer(question):
|
|
41 |
)
|
42 |
|
43 |
answer = tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
"""
|
57 |
-
# 💬 Finance QA Chatbot
|
58 |
-
Ask a finance-related question and get an accurate, concise response.
|
59 |
-
Built using a fine-tuned T5 Transformer on financial Q&A data.
|
60 |
-
"""
|
61 |
-
)
|
62 |
-
|
63 |
-
chatbot = gr.Chatbot(label="Finance Chatbot", height=400, bubble_full_width=False)
|
64 |
-
|
65 |
-
with gr.Row():
|
66 |
-
with gr.Column(scale=8):
|
67 |
-
question_box = gr.Textbox(placeholder="Ask a finance question...", show_label=False, lines=2)
|
68 |
-
with gr.Column(scale=1):
|
69 |
-
submit_btn = gr.Button("Send")
|
70 |
-
|
71 |
-
clear_btn = gr.Button("Clear Chat")
|
72 |
-
|
73 |
-
submit_btn.click(fn=generate_answer, inputs=question_box, outputs=[question_box, chatbot])
|
74 |
-
clear_btn.click(fn=clear_chat, outputs=chatbot)
|
75 |
-
|
76 |
-
# Launch app
|
77 |
-
interface.launch()
|
|
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
model = TFAutoModelForSeq2SeqLM.from_pretrained(model_name)
|
9 |
|
10 |
+
# Load dataset
|
11 |
dataset = load_dataset("virattt/financial-qa-10K")["train"]
|
12 |
|
13 |
+
# Function to retrieve context
|
|
|
|
|
|
|
14 |
def get_context_for_question(question):
|
15 |
for item in dataset:
|
16 |
if item["question"].strip().lower() == question.strip().lower():
|
17 |
return item["context"]
|
18 |
return "No relevant context found."
|
19 |
|
20 |
+
# Predict function
|
21 |
def generate_answer(question):
|
22 |
context = get_context_for_question(question)
|
23 |
prompt = f"Q: {question} Context: {context} A:"
|
|
|
38 |
)
|
39 |
|
40 |
answer = tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
|
41 |
+
return answer
|
42 |
+
|
43 |
+
# Interface
|
44 |
+
interface = gr.Interface(
|
45 |
+
fn=generate_answer,
|
46 |
+
inputs=gr.Textbox(lines=2, placeholder="Ask a finance question..."),
|
47 |
+
outputs="text",
|
48 |
+
title="Finance QA Chatbot",
|
49 |
+
description="Built using a fine-tuned T5 Transformer. Ask a finance-related question and get an accurate, concise answer."
|
50 |
+
)
|
51 |
+
|
52 |
+
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|