File size: 6,196 Bytes
693c47c
 
 
 
 
1ae29e2
693c47c
 
 
 
 
1ae29e2
 
693c47c
1ae29e2
 
 
 
 
 
 
6fc2acb
 
1ae29e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fc2acb
1ae29e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
693c47c
1ae29e2
 
693c47c
1ae29e2
 
 
 
 
 
693c47c
1ae29e2
 
 
693c47c
1ae29e2
 
 
 
 
693c47c
1ae29e2
 
b35da19
1ae29e2
 
 
 
693c47c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ae29e2
 
693c47c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e649daa
693c47c
e649daa
 
693c47c
 
 
1ae29e2
693c47c
6fc2acb
693c47c
e649daa
 
 
 
 
 
 
 
1ae29e2
e649daa
 
1ae29e2
693c47c
 
e649daa
1ae29e2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import requests
import io
import re
import numpy as np
import faiss
import torch
from pypdf import PdfReader
from rank_bm25 import BM25Okapi
from sentence_transformers import SentenceTransformer
from accelerate import Accelerator
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from bert_score import score
import gradio as gr

# --- Preload Data ---
DEFAULT_PDF_URLS = [
    "https://www.latentview.com/wp-content/uploads/2023/07/LatentView-Annual-Report-2022-23.pdf",
    "https://www.latentview.com/wp-content/uploads/2024/08/LatentView-Annual-Report-2023-24.pdf"
] 

def preload_data(pdf_urls):
    embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
    
    def download_pdf(url):
        response = requests.get(url, stream=True)
        response.raise_for_status()
        return response.content

    def extract_text_from_pdf(pdf_bytes):
        pdf_file = io.BytesIO(pdf_bytes)
        reader = PdfReader(pdf_file)
        text = ""
        for page in reader.pages:
            text += page.extract_text() or ""
        return text

    def preprocess_text(text):
        financial_symbols = r"\$\€\₹\£\¥\₩\₽\₮\₦\₲"
        text = re.sub(fr"[^\w\s{financial_symbols}.,%/₹$€¥£-]", "", text)
        text = re.sub(r'\s+', ' ', text).strip()
        return text

    def chunk_text(text, chunk_size=512, overlap_size=50):
        chunks = []
        start = 0
        text_length = len(text)
        while start < text_length:
            end = min(start + chunk_size, text_length)
            if end < text_length and text[end].isalnum():
                last_space = text.rfind(" ", start, end)
                if last_space != -1:
                    end = last_space
            chunk = text[start:end].strip()
            if chunk:
                chunks.append(chunk)
            if end == text_length:
                break
            overlap_start = max(0, end - overlap_size)
            if overlap_start < end:
                last_overlap_space = text.rfind(" ", 0, overlap_start)
                if last_overlap_space != -1 and last_overlap_space > start:
                    start = last_overlap_space + 1
                else:
                    start = end
            else:
                start = end
        return chunks

    all_data = []
    for url in pdf_urls:
        pdf_bytes = download_pdf(url)
        text = extract_text_from_pdf(pdf_bytes)
        preprocessed_text = preprocess_text(text)
        all_data.append(preprocessed_text)

    chunks = []
    for data in all_data:
        chunks.extend(chunk_text(data))

    embeddings = embedding_model.encode(chunks)
    index = faiss.IndexFlatL2(embeddings.shape[1])
    index.add(embeddings)

    return index, chunks

index, chunks = preload_data(DEFAULT_PDF_URLS)
accelerator = Accelerator()
MODEL_NAME = "google/flan-t5-small"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map="auto", trust_remote_code=True, cache_dir="./my_models")
model = accelerator.prepare(model)
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)

def bm25_retrieval(query, documents, top_k=3):
    tokenized_docs = [doc.split() for doc in documents]
    bm25 = BM25Okapi(tokenized_docs)
    return [documents[i] for i in np.argsort(bm25.get_scores(query.split()))[::-1][:top_k]]

def adaptive_retrieval(query, index, chunks, top_k=3, bm25_weight=0.5):
    query_embedding = embedding_model.encode([query], convert_to_numpy=True, dtype=np.float16)
    _, indices = index.search(query_embedding, top_k)
    vector_results = [chunks[i] for i in indices[0]]
    bm25_results = bm25_retrieval(query, chunks, top_k)
    return list(set(vector_results + bm25_results))

def rerank(query, results):
    query_embedding = embedding_model.encode([query], convert_to_numpy=True)
    result_embeddings = embedding_model.encode(results, convert_to_numpy=True)
    similarities = np.dot(result_embeddings, query_embedding.T).flatten()
    return [results[i] for i in np.argsort(similarities)[::-1]], similarities

def merge_chunks(retrieved_chunks, overlap_size=100):
    merged_chunks = []
    buffer = retrieved_chunks[0] if retrieved_chunks else ""
    for i in range(1, len(retrieved_chunks)):
        chunk = retrieved_chunks[i]
        overlap_start = buffer[-overlap_size:]
        overlap_index = chunk.find(overlap_start)
        if overlap_index != -1:
            buffer += chunk[overlap_index + overlap_size:]
        else:
            merged_chunks.append(buffer)
            buffer = chunk
    if buffer:
        merged_chunks.append(buffer)
    return merged_chunks

def calculate_confidence(query, answer):
    P, R, F1 = score([answer], [query], lang="en", verbose=False)
    return F1.item()

def generate_response(query, context):
    prompt = f"""Your task is to analyze the given Context and answer the Question concisely in plain English. 
    **Guidelines:**
    - Do NOT include </think> tag, just provide the final answer only.
    - Provide a direct, factual answer based strictly on the Context.
    - Avoid generating Python code, solutions, or any irrelevant information.
    Context: {context}
    Question: {query}     
    Answer:
    """
    response = generator(prompt, max_new_tokens=150, num_return_sequences=1)[0]['generated_text']
    answer = response.split("Answer:")[1].strip()
    return answer

def process_query(query):
    retrieved_chunks = adaptive_retrieval(query, index, chunks)
    merged_chunks = merge_chunks(retrieved_chunks, 50)
    reranked_chunks, similarities = rerank(query, merged_chunks)
    context = " ".join(reranked_chunks[:3])
    answer = generate_response(query, context)
    confidence = calculate_confidence(query, answer)
    full_response = f"{answer}\n\nConfidence: {confidence:.2f}"
    return full_response

iface = gr.Interface(
    fn=process_query,
    inputs=gr.Textbox(placeholder="Enter your financial question"),
    outputs="text",
    title="Financial Document Q&A Chatbot",
    description="Ask questions about the preloaded financial documents."
)

iface.launch()
accelerator.free_memory()