Niveytha27's picture
Update app.py
693c47c verified
raw
history blame
8.16 kB
import requests
import io
import re
import numpy as np
import faiss
import torch
import time
import streamlit as st
from pypdf import PdfReader
from rank_bm25 import BM25Okapi
from sentence_transformers import SentenceTransformer
from accelerate import Accelerator
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from bert_score import score
def download_pdf(url):
"""Downloads a PDF from a URL and returns its content as bytes."""
try:
response = requests.get(url, stream=True)
response.raise_for_status()
return response.content
except requests.exceptions.RequestException as e:
st.error(f"Error downloading PDF from {url}: {e}")
return None
def extract_text_from_pdf(pdf_bytes):
"""Extracts text from a PDF byte stream."""
try:
pdf_file = io.BytesIO(pdf_bytes)
reader = PdfReader(pdf_file)
text = ""
for page in reader.pages:
text += page.extract_text() or "" #Handle None return.
return text
except Exception as e:
st.error(f"Error extracting text from PDF: {e}")
return None
def preprocess_text(text):
"""Cleans text while retaining financial symbols and ensuring proper formatting."""
if not text:
return ""
# Define allowed financial symbols
financial_symbols = r"\$\€\₹\£\¥\₩\₽\₮\₦\₲"
# Allow numbers, letters, spaces, financial symbols, common punctuation (.,%/-)
text = re.sub(fr"[^\w\s{financial_symbols}.,%/₹$€¥£-]", "", text)
# Normalize spaces
text = re.sub(r'\s+', ' ', text).strip()
return text
def load_financial_pdfs(pdf_urls):
"""Downloads and extracts text from a list of PDF URLs."""
all_data = []
for url in pdf_urls:
pdf_bytes = download_pdf(url)
if pdf_bytes:
text = extract_text_from_pdf(pdf_bytes)
if text:
preprocessed_text = preprocess_text(text)
all_data.append(preprocessed_text)
return all_data
# Example Usage (Replace with actual PDF URLs)
pdf_urls = [
"https://www.latentview.com/wp-content/uploads/2023/07/LatentView-Annual-Report-2022-23.pdf",
"https://www.latentview.com/wp-content/uploads/2024/08/LatentView-Annual-Report-2023-24.pdf",
]
all_data = load_financial_pdfs(pdf_urls)
def chunk_text(text, chunk_size=700, overlap_size=150):
"""Chunks text without breaking words in the middle (corrected overlap)."""
chunks = []
start = 0
text_length = len(text)
while start < text_length:
end = min(start + chunk_size, text_length)
# Ensure we do not split words
if end < text_length and text[end].isalnum():
last_space = text.rfind(" ", start, end) # Find last space within the chunk
if last_space != -1: # If a space is found, adjust the end
end = last_space
chunk = text[start:end].strip()
if chunk: # Avoid empty chunks
chunks.append(chunk)
if end == text_length:
break
# Corrected overlap calculation
overlap_start = max(0, end - overlap_size)
if overlap_start < end: # Prevent infinite loop if overlap_start is equal to end.
last_overlap_space = text.rfind(" ", 0, overlap_start)
if last_overlap_space != -1 and last_overlap_space > start:
start = last_overlap_space + 1
else:
start = end # If no space found, start at the last end.
else:
start = end
return chunks
chunks = []
for data in all_data:
chunks.extend(chunk_text(data))
embedding_model = SentenceTransformer("BAAI/bge-large-en")
# embedding_model = SentenceTransformer('multi-qa-mpnet-base-dot-v1')
embeddings = embedding_model.encode(chunks)
index = faiss.IndexFlatL2(embeddings.shape[1])
index.add(embeddings)
def bm25_retrieval(query, documents, top_k=3):
tokenized_docs = [doc.split() for doc in documents]
bm25 = BM25Okapi(tokenized_docs)
return [documents[i] for i in np.argsort(bm25.get_scores(query.split()))[::-1][:top_k]]
def adaptive_retrieval(query, index, chunks, top_k=3, bm25_weight=0.5):
query_embedding = embedding_model.encode([query], convert_to_numpy=True, dtype=np.float16)
_, indices = index.search(query_embedding, top_k)
vector_results = [chunks[i] for i in indices[0]]
bm25_results = bm25_retrieval(query, chunks, top_k)
return list(set(vector_results + bm25_results))
def rerank(query, results):
query_embedding = embedding_model.encode([query], convert_to_numpy=True)
result_embeddings = embedding_model.encode(results, convert_to_numpy=True)
similarities = np.dot(result_embeddings, query_embedding.T).flatten()
return [results[i] for i in np.argsort(similarities)[::-1]], similarities
#Chunk merging.
def merge_chunks(retrieved_chunks, overlap_size=100):
"""Merges overlapping chunks properly by detecting the actual overlap."""
merged_chunks = []
buffer = retrieved_chunks[0] if retrieved_chunks else ""
for i in range(1, len(retrieved_chunks)):
chunk = retrieved_chunks[i]
# Find actual overlap
overlap_start = buffer[-overlap_size:] # Get the last `overlap_size` chars of the previous chunk
overlap_index = chunk.find(overlap_start) # Find where this part appears in the new chunk
if overlap_index != -1:
# Merge only the non-overlapping part
buffer += chunk[overlap_index + overlap_size:]
else:
# Store completed merged chunk and start a new one
merged_chunks.append(buffer)
buffer = chunk
if buffer:
merged_chunks.append(buffer)
return merged_chunks
# def calculate_confidence(query, context, similarities):
# return np.mean(similarities) # Averaged similarity scores
def calculate_confidence(query, answer):
P, R, F1 = score([answer], [query], lang="en", verbose=False)
return F1.item()
# Load SLM
accelerator = Accelerator()
accelerator.free_memory()
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map="auto", cache_dir="./my_models")
model = accelerator.prepare(model)
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
def generate_response(query, context):
prompt = f"""Your task is to analyze the given Context and answer the Question concisely in plain English.
**Guidelines:**
- Do NOT include </think> tag, just provide the final answer only.
- Provide a direct, factual answer based strictly on the Context.
- Avoid generating Python code, solutions, or any irrelevant information.
Context: {context}
Question: {query}
Answer:
"""
response = generator(prompt, max_new_tokens=150, num_return_sequences=1)[0]['generated_text'] #example 100 max new tokens
print(response)
answer = response.split("Answer:")[1].strip()
return answer
import gradio as gr
# Your existing functions should be defined before using them
# adaptive_retrieval, merge_chunks, rerank, generate_response, calculate_confidence
def inference_pipeline(query):
retrieved_chunks = adaptive_retrieval(query, index, chunks)
merged_chunks = merge_chunks(retrieved_chunks, 150)
reranked_chunks, similarities = rerank(query, merged_chunks)
context = " ".join(reranked_chunks[:3]) # Take top 3 most relevant
response = generate_response(query, context)
confidence = calculate_confidence(query, context, similarities)
return response, confidence
# Define the Gradio UI
ui = gr.Interface(
fn=inference_pipeline,
inputs=gr.Textbox(label="Enter your financial question"),
outputs=[
gr.Textbox(label="Generated Response"),
gr.Number(label="Confidence Score"),
],
title="Financial Q&A Assistant",
description="Ask financial questions and get AI-powered responses with confidence scores.",
)
# Launch the UI
ui.launch(share=True) # share=True allows public access