Spaces:
Running
Running
File size: 23,259 Bytes
038f313 1cee504 c5a20a4 ea82e64 4264b3e 038f313 db00df1 2d6eaa5 c6bdd15 4264b3e 038f313 27c8b8d 4264b3e 27c8b8d 038f313 3a64d68 98674ca 9e12544 4264b3e 9e12544 9eb0de2 038f313 0ef95ea 4264b3e 2d6eaa5 0ef95ea 9e12544 4264b3e 9e12544 d92e5cd f7c4208 9e12544 8eb1697 9e12544 ba0614b 901bafe 0ef95ea 038f313 1cee504 c5a20a4 2d6eaa5 901bafe 5b8ad4f 27c8b8d 2d6eaa5 4264b3e 2d6eaa5 4264b3e 2d6eaa5 27c8b8d 4264b3e 3f8952c d92e5cd 5b8ad4f 0ef95ea 2d6eaa5 0ef95ea 1cee504 3b18f78 1cee504 2d6eaa5 1cee504 ba0614b 1cee504 5b8ad4f 1cee504 4264b3e 1cee504 2d6eaa5 23119eb 1cee504 23119eb 1cee504 23119eb 1cee504 0ef95ea 901bafe 9e12544 4264b3e 2d6eaa5 4264b3e 2d6eaa5 4264b3e 1cee504 4264b3e d92e5cd 4264b3e d92e5cd 4264b3e 2d6eaa5 4264b3e 2d6eaa5 4264b3e b0cbd1c 4264b3e fdab9dd 4264b3e ea82e64 4264b3e fdab9dd d92e5cd ea82e64 d92e5cd fdab9dd ea82e64 7a4f867 ea82e64 7a4f867 9e12544 769901b 77298b9 4264b3e 9e12544 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 |
import gradio as gr
from huggingface_hub import InferenceClient
import os
import json
import base64
from PIL import Image
import io
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
def encode_image_to_base64(image):
"""Convert a PIL Image to a base64 string"""
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return img_str
def process_uploaded_images(images):
"""Process uploaded images and return image_url dicts for API submission"""
if not images:
return []
image_contents = []
for img in images:
if isinstance(img, str): # Path to an image
try:
image = Image.open(img)
base64_image = encode_image_to_base64(image)
image_contents.append({
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
})
except Exception as e:
print(f"Error processing image {img}: {e}")
else: # Already a PIL Image
try:
base64_image = encode_image_to_base64(img)
image_contents.append({
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
})
except Exception as e:
print(f"Error processing uploaded image: {e}")
return image_contents
def respond(
message,
images, # New parameter for uploaded images
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
provider,
custom_api_key,
custom_model,
model_search_term,
selected_model
):
print(f"Received message: {message}")
print(f"Received images: {len(images) if images else 0} image(s)")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Selected provider: {provider}")
print(f"Custom API Key provided: {bool(custom_api_key.strip())}")
print(f"Selected model (custom_model): {custom_model}")
print(f"Model search term: {model_search_term}")
print(f"Selected model from radio: {selected_model}")
# Determine which token to use - custom API key if provided, otherwise the ACCESS_TOKEN
token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN
# Log which token source we're using (without printing the actual token)
if custom_api_key.strip() != "":
print("USING CUSTOM API KEY: BYOK token provided by user is being used for authentication")
else:
print("USING DEFAULT API KEY: Environment variable HF_TOKEN is being used for authentication")
# Initialize the Inference Client with the provider and appropriate token
client = InferenceClient(token=token_to_use, provider=provider)
print(f"Hugging Face Inference Client initialized with {provider} provider.")
# Convert seed to None if -1 (meaning random)
if seed == -1:
seed = None
# Prepare messages in the format expected by the API
messages = [{"role": "system", "content": system_message}]
print("Initial messages array constructed.")
# Add conversation history to the context
for val in history:
user_part = val[0]
assistant_part = val[1]
# Process user messages (could be multimodal)
if user_part:
# Check if the user message is already multimodal (from history)
if isinstance(user_part, list):
# Already in multimodal format, use as is
messages.append({"role": "user", "content": user_part})
print("Added multimodal user message from history")
else:
# Simple text message
messages.append({"role": "user", "content": user_part})
print(f"Added user message to context: {user_part}")
# Process assistant messages (always text)
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
print(f"Added assistant message to context: {assistant_part}")
# Process the current message (could include images)
current_message_content = []
# Add text content if provided
if message and message.strip():
current_message_content.append({
"type": "text",
"text": message
})
# Process and add image content if provided
if images:
image_contents = process_uploaded_images(images)
current_message_content.extend(image_contents)
# Format the final message based on content
if current_message_content:
if len(current_message_content) == 1 and "type" in current_message_content[0] and current_message_content[0]["type"] == "text":
# If only text, use simple string format for compatibility with all models
messages.append({"role": "user", "content": current_message_content[0]["text"]})
print(f"Added simple text user message: {current_message_content[0]['text']}")
else:
# If multimodal content, use the array format
messages.append({"role": "user", "content": current_message_content})
print(f"Added multimodal user message with {len(current_message_content)} parts")
# Determine which model to use, prioritizing custom_model if provided
model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
print(f"Model selected for inference: {model_to_use}")
# Start with an empty string to build the response as tokens stream in
response = ""
print(f"Sending request to {provider} provider.")
# Prepare parameters for the chat completion request
parameters = {
"max_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"frequency_penalty": frequency_penalty,
}
if seed is not None:
parameters["seed"] = seed
# Use the InferenceClient for making the request
try:
# Create a generator for the streaming response
stream = client.chat_completion(
model=model_to_use,
messages=messages,
stream=True,
**parameters
)
# Print a starting message for token streaming
print("Received tokens: ", end="", flush=True)
# Process the streaming response
for chunk in stream:
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
# Extract the content from the response
if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
token_text = chunk.choices[0].delta.content
if token_text:
# Print tokens inline without newlines
print(token_text, end="", flush=True)
response += token_text
yield response
# Print a newline at the end of all tokens
print()
except Exception as e:
print(f"Error during inference: {e}")
response += f"\nError: {str(e)}"
yield response
print("Completed response generation.")
# Function to validate provider selection based on BYOK
def validate_provider(api_key, provider):
# If no custom API key is provided, only "hf-inference" can be used
if not api_key.strip() and provider != "hf-inference":
return gr.update(value="hf-inference")
return gr.update(value=provider)
# Function to update featured model list based on search
def filter_models(search_term):
print(f"Filtering models with search term: {search_term}")
filtered = [m for m in models_list if search_term.lower() in m.lower()]
print(f"Filtered models: {filtered}")
return gr.update(choices=filtered)
def set_custom_model_from_radio(selected):
"""
This function will get triggered whenever someone picks a model from the 'Featured Models' radio.
We will update the Custom Model text box with that selection automatically.
"""
print(f"Featured model selected: {selected}")
return selected
# Define multimodal models list
multimodal_models_list = [
"meta-llama/Llama-3.3-70B-Vision-Instruct",
"meta-llama/Llama-3.1-8B-Vision-Instruct",
"Qwen/Qwen2.5-VL-7B-Chat",
"Qwen/Qwen2.5-VL-3B-Chat",
"microsoft/Phi-3-vision-instruct",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"deepseek-ai/DeepSeek-VL-7B-Chat",
"01-ai/Yi-VL-6B-Chat",
"01-ai/Yi-VL-34B-Chat",
"Cohere/command-vision-nightly",
"LLaVA/llava-1.6-34b-hf",
"fireworks-ai/FireworksBridge-Vision-Alpha",
"liuhaotian/llava-v1.6-vicuna-13b",
]
# Add multimodal models to the full model list
models_list = [
"meta-llama/Llama-3.3-70B-Instruct",
"meta-llama/Llama-3.1-70B-Instruct",
"meta-llama/Llama-3.0-70B-Instruct",
"meta-llama/Llama-3.2-3B-Instruct",
"meta-llama/Llama-3.2-1B-Instruct",
"meta-llama/Llama-3.1-8B-Instruct",
"NousResearch/Hermes-3-Llama-3.1-8B",
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
"mistralai/Mistral-Nemo-Instruct-2407",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mistral-7B-Instruct-v0.2",
"Qwen/Qwen3-235B-A22B",
"Qwen/Qwen3-32B",
"Qwen/Qwen2.5-72B-Instruct",
"Qwen/Qwen2.5-3B-Instruct",
"Qwen/Qwen2.5-0.5B-Instruct",
"Qwen/QwQ-32B",
"Qwen/Qwen2.5-Coder-32B-Instruct",
"microsoft/Phi-3.5-mini-instruct",
"microsoft/Phi-3-mini-128k-instruct",
"microsoft/Phi-3-mini-4k-instruct",
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
"HuggingFaceH4/zephyr-7b-beta",
"HuggingFaceTB/SmolLM2-360M-Instruct",
"tiiuae/falcon-7b-instruct",
"01-ai/Yi-1.5-34B-Chat",
] + multimodal_models_list # Add multimodal models to the list
# Create a custom ChatBot class that will display images
def format_history_with_images(history):
"""
Format history for display in the chatbot, handling multimodal content
"""
formatted_history = []
for user_msg, assistant_msg in history:
# Process user message
if isinstance(user_msg, list):
# Multimodal message
formatted_user_msg = []
for item in user_msg:
if item.get("type") == "text":
formatted_user_msg.append(item["text"])
elif item.get("type") == "image_url":
# Extract the base64 image data
img_url = item.get("image_url", {}).get("url", "")
if img_url.startswith("data:image/"):
formatted_user_msg.append((img_url, "image"))
formatted_history.append((formatted_user_msg, assistant_msg))
else:
# Regular text message
formatted_history.append((user_msg, assistant_msg))
return formatted_history
# GRADIO UI
# Create a custom chatbot that can display images
chatbot = gr.Chatbot(
height=600,
show_copy_button=True,
placeholder="Select a model and begin chatting",
layout="panel"
)
print("Chatbot interface created.")
# Create a virtual column layout for the message input area
with gr.Blocks() as msg_input:
with gr.Row():
with gr.Column(scale=4):
msg = gr.Textbox(
placeholder="Enter text here or upload an image",
show_label=False,
container=False,
lines=3
)
with gr.Column(scale=1, min_width=50):
img_upload = gr.Image(
type="pil",
label="Upload Image",
show_label=False,
icon="🖼️",
container=True,
height=50,
width=50
)
# Basic input components
system_message_box = gr.Textbox(value="", placeholder="You are a helpful assistant.", label="System Prompt")
with gr.Accordion("Model Settings", open=False):
with gr.Row():
with gr.Column():
max_tokens_slider = gr.Slider(
minimum=1,
maximum=4096,
value=512,
step=1,
label="Max tokens"
)
temperature_slider = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
)
with gr.Column():
top_p_slider = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P"
)
frequency_penalty_slider = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Frequency Penalty"
)
with gr.Row():
seed_slider = gr.Slider(
minimum=-1,
maximum=65535,
value=-1,
step=1,
label="Seed (-1 for random)"
)
with gr.Accordion("Model Selection", open=False):
with gr.Row():
with gr.Column():
# Provider selection
providers_list = [
"hf-inference", # Default Hugging Face Inference
"cerebras", # Cerebras provider
"together", # Together AI
"sambanova", # SambaNova
"novita", # Novita AI
"cohere", # Cohere
"fireworks-ai", # Fireworks AI
"hyperbolic", # Hyperbolic
"nebius", # Nebius
]
provider_radio = gr.Radio(
choices=providers_list,
value="hf-inference",
label="Inference Provider",
info="[View all models here](https://huggingface.co/models?inference_provider=all&pipeline_tag=text-generation&sort=trending)"
)
# New BYOK textbox - Added for the new feature
byok_textbox = gr.Textbox(
value="",
label="BYOK (Bring Your Own Key)",
info="Enter a custom Hugging Face API key here. When empty, only 'hf-inference' provider can be used.",
placeholder="Enter your Hugging Face API token",
type="password" # Hide the API key for security
)
with gr.Column():
# Model selection components
model_search_box = gr.Textbox(
label="Filter Models",
placeholder="Search for a featured model...",
lines=1
)
featured_model_radio = gr.Radio(
label="Select a model below",
choices=models_list,
value="meta-llama/Llama-3.3-70B-Vision-Instruct", # Default to a multimodal model
interactive=True
)
# Custom model box
custom_model_box = gr.Textbox(
value="",
label="Custom Model",
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
placeholder="meta-llama/Llama-3.3-70B-Vision-Instruct"
)
gr.Markdown("[See all multimodal models](https://huggingface.co/models?pipeline_tag=visual-question-answering&sort=trending)")
# Main Gradio interface
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
gr.Markdown("# 🤖 Serverless-MultiModal-Hub")
with gr.Row():
with gr.Column(scale=3):
# Display the chatbot
chatbot_interface = chatbot
# Custom submit function to handle multimodal inputs
def submit_message(message, images, history):
history = history or []
# Format the message content based on whether there are images
if images:
# Create a multimodal message format for history display
user_msg = []
if message:
user_msg.append({"type": "text", "text": message})
# Add each image as an image_url item
for img in images:
if img is not None:
img_base64 = encode_image_to_base64(img)
img_url = f"data:image/jpeg;base64,{img_base64}"
user_msg.append({
"type": "image_url",
"image_url": {"url": img_url}
})
# Add to history
history.append([user_msg, None])
else:
# Text-only message
if message:
history.append([message, None])
else:
# No content to submit
return history
return history
# Create message input
with gr.Group():
with gr.Row():
with gr.Column(scale=4):
text_input = gr.Textbox(
placeholder="Enter text here",
show_label=False,
container=False,
lines=3
)
with gr.Column(scale=1, min_width=50):
image_input = gr.Image(
type="pil",
label="Upload Image",
show_label=False,
sources=["upload", "clipboard"],
tool="editor",
height=100,
visible=True
)
# Submit button
submit_btn = gr.Button("Submit", variant="primary")
# Clear button
clear_btn = gr.Button("Clear")
with gr.Column(scale=1):
# Put settings here
system_message_box = gr.Textbox(
value="",
placeholder="You are a helpful assistant that can understand images.",
label="System Prompt",
lines=2
)
with gr.Accordion("Model Selection", open=False):
# Provider selection
provider_radio = gr.Radio(
choices=providers_list,
value="hf-inference",
label="Inference Provider"
)
# BYOK textbox
byok_textbox = gr.Textbox(
value="",
label="API Key",
placeholder="Enter provider API key",
type="password"
)
# Model selection components
model_search_box = gr.Textbox(
label="Filter Models",
placeholder="Search models...",
lines=1
)
featured_model_radio = gr.Radio(
label="Models",
choices=models_list,
value="meta-llama/Llama-3.3-70B-Vision-Instruct",
interactive=True
)
custom_model_box = gr.Textbox(
value="",
label="Custom Model",
placeholder="Enter model path"
)
gr.Markdown("[View all multimodal models](https://huggingface.co/models?pipeline_tag=visual-question-answering&sort=trending)")
with gr.Accordion("Model Settings", open=False):
max_tokens_slider = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max tokens")
temperature_slider = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P")
frequency_penalty_slider = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
seed_slider = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)")
# Connect the submit button
submit_btn.click(
fn=submit_message,
inputs=[text_input, image_input, chatbot_interface],
outputs=[chatbot_interface],
queue=False
).then(
fn=respond,
inputs=[
text_input,
image_input,
chatbot_interface,
system_message_box,
max_tokens_slider,
temperature_slider,
top_p_slider,
frequency_penalty_slider,
seed_slider,
provider_radio,
byok_textbox,
custom_model_box,
model_search_box,
featured_model_radio
],
outputs=[chatbot_interface],
queue=True
).then(
fn=lambda: (None, None), # Clear inputs after submission
inputs=None,
outputs=[text_input, image_input]
)
# Clear button functionality
clear_btn.click(lambda: None, None, chatbot_interface, queue=False)
# Connect the model filter to update the radio choices
model_search_box.change(
fn=filter_models,
inputs=model_search_box,
outputs=featured_model_radio
)
# Connect the featured model radio to update the custom model box
featured_model_radio.change(
fn=set_custom_model_from_radio,
inputs=featured_model_radio,
outputs=custom_model_box
)
# Connect the BYOK textbox to validate provider selection
byok_textbox.change(
fn=validate_provider,
inputs=[byok_textbox, provider_radio],
outputs=provider_radio
)
# Also validate provider when the radio changes to ensure consistency
provider_radio.change(
fn=validate_provider,
inputs=[byok_textbox, provider_radio],
outputs=provider_radio
)
if __name__ == "__main__":
print("Launching Serverless-MultiModal-Hub application.")
demo.launch(show_api=True) |