File size: 23,259 Bytes
038f313
1cee504
c5a20a4
ea82e64
4264b3e
 
 
038f313
db00df1
2d6eaa5
c6bdd15
4264b3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
038f313
27c8b8d
4264b3e
27c8b8d
 
038f313
 
 
3a64d68
98674ca
9e12544
4264b3e
9e12544
9eb0de2
 
038f313
0ef95ea
4264b3e
2d6eaa5
0ef95ea
 
 
9e12544
4264b3e
9e12544
d92e5cd
 
f7c4208
9e12544
 
 
8eb1697
 
 
 
 
 
9e12544
 
ba0614b
 
901bafe
0ef95ea
 
038f313
1cee504
c5a20a4
2d6eaa5
901bafe
5b8ad4f
27c8b8d
2d6eaa5
 
4264b3e
 
2d6eaa5
4264b3e
 
 
 
 
 
 
 
 
 
 
2d6eaa5
 
 
27c8b8d
4264b3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f8952c
d92e5cd
5b8ad4f
0ef95ea
2d6eaa5
0ef95ea
1cee504
 
 
 
3b18f78
1cee504
 
 
 
2d6eaa5
1cee504
 
 
ba0614b
1cee504
 
 
5b8ad4f
 
1cee504
4264b3e
1cee504
2d6eaa5
23119eb
 
 
1cee504
 
 
 
 
 
 
23119eb
 
1cee504
 
23119eb
 
 
1cee504
 
 
 
 
0ef95ea
901bafe
9e12544
 
 
 
 
 
 
4264b3e
 
 
 
 
 
2d6eaa5
4264b3e
 
 
 
 
 
 
2d6eaa5
4264b3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cee504
 
4264b3e
d92e5cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4264b3e
d92e5cd
4264b3e
 
2d6eaa5
4264b3e
2d6eaa5
4264b3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0cbd1c
4264b3e
 
 
 
 
 
fdab9dd
4264b3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea82e64
4264b3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdab9dd
d92e5cd
 
 
ea82e64
d92e5cd
fdab9dd
 
ea82e64
7a4f867
ea82e64
7a4f867
 
9e12544
 
 
 
 
 
 
 
 
 
 
 
 
 
769901b
77298b9
4264b3e
9e12544
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
import gradio as gr
from huggingface_hub import InferenceClient
import os
import json
import base64
from PIL import Image
import io

ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")

def encode_image_to_base64(image):
    """Convert a PIL Image to a base64 string"""
    buffered = io.BytesIO()
    image.save(buffered, format="JPEG")
    img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
    return img_str

def process_uploaded_images(images):
    """Process uploaded images and return image_url dicts for API submission"""
    if not images:
        return []
    
    image_contents = []
    for img in images:
        if isinstance(img, str):  # Path to an image
            try:
                image = Image.open(img)
                base64_image = encode_image_to_base64(image)
                image_contents.append({
                    "type": "image_url",
                    "image_url": {
                        "url": f"data:image/jpeg;base64,{base64_image}"
                    }
                })
            except Exception as e:
                print(f"Error processing image {img}: {e}")
        else:  # Already a PIL Image
            try:
                base64_image = encode_image_to_base64(img)
                image_contents.append({
                    "type": "image_url",
                    "image_url": {
                        "url": f"data:image/jpeg;base64,{base64_image}"
                    }
                })
            except Exception as e:
                print(f"Error processing uploaded image: {e}")
    
    return image_contents

def respond(
    message,
    images,  # New parameter for uploaded images
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    frequency_penalty,
    seed,
    provider,
    custom_api_key,
    custom_model,    
    model_search_term,
    selected_model
):
    print(f"Received message: {message}")
    print(f"Received images: {len(images) if images else 0} image(s)")
    print(f"History: {history}")
    print(f"System message: {system_message}")
    print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
    print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
    print(f"Selected provider: {provider}")         
    print(f"Custom API Key provided: {bool(custom_api_key.strip())}")
    print(f"Selected model (custom_model): {custom_model}")  
    print(f"Model search term: {model_search_term}")
    print(f"Selected model from radio: {selected_model}")

    # Determine which token to use - custom API key if provided, otherwise the ACCESS_TOKEN
    token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN
    
    # Log which token source we're using (without printing the actual token)
    if custom_api_key.strip() != "":
        print("USING CUSTOM API KEY: BYOK token provided by user is being used for authentication")
    else:
        print("USING DEFAULT API KEY: Environment variable HF_TOKEN is being used for authentication")
    
    # Initialize the Inference Client with the provider and appropriate token
    client = InferenceClient(token=token_to_use, provider=provider)
    print(f"Hugging Face Inference Client initialized with {provider} provider.")

    # Convert seed to None if -1 (meaning random)
    if seed == -1:
        seed = None

    # Prepare messages in the format expected by the API
    messages = [{"role": "system", "content": system_message}]
    print("Initial messages array constructed.")

    # Add conversation history to the context
    for val in history:
        user_part = val[0]
        assistant_part = val[1]
        
        # Process user messages (could be multimodal)
        if user_part:
            # Check if the user message is already multimodal (from history)
            if isinstance(user_part, list):
                # Already in multimodal format, use as is
                messages.append({"role": "user", "content": user_part})
                print("Added multimodal user message from history")
            else:
                # Simple text message
                messages.append({"role": "user", "content": user_part})
                print(f"Added user message to context: {user_part}")
                
        # Process assistant messages (always text)
        if assistant_part:
            messages.append({"role": "assistant", "content": assistant_part})
            print(f"Added assistant message to context: {assistant_part}")

    # Process the current message (could include images)
    current_message_content = []
    
    # Add text content if provided
    if message and message.strip():
        current_message_content.append({
            "type": "text",
            "text": message
        })
    
    # Process and add image content if provided
    if images:
        image_contents = process_uploaded_images(images)
        current_message_content.extend(image_contents)
    
    # Format the final message based on content
    if current_message_content:
        if len(current_message_content) == 1 and "type" in current_message_content[0] and current_message_content[0]["type"] == "text":
            # If only text, use simple string format for compatibility with all models
            messages.append({"role": "user", "content": current_message_content[0]["text"]})
            print(f"Added simple text user message: {current_message_content[0]['text']}")
        else:
            # If multimodal content, use the array format
            messages.append({"role": "user", "content": current_message_content})
            print(f"Added multimodal user message with {len(current_message_content)} parts")
    
    # Determine which model to use, prioritizing custom_model if provided
    model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
    print(f"Model selected for inference: {model_to_use}")

    # Start with an empty string to build the response as tokens stream in
    response = ""
    print(f"Sending request to {provider} provider.")

    # Prepare parameters for the chat completion request
    parameters = {
        "max_tokens": max_tokens,
        "temperature": temperature,
        "top_p": top_p,
        "frequency_penalty": frequency_penalty,
    }
    
    if seed is not None:
        parameters["seed"] = seed

    # Use the InferenceClient for making the request
    try:
        # Create a generator for the streaming response
        stream = client.chat_completion(
            model=model_to_use,
            messages=messages,
            stream=True,
            **parameters
        )
        
        # Print a starting message for token streaming
        print("Received tokens: ", end="", flush=True)
        
        # Process the streaming response
        for chunk in stream:
            if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
                # Extract the content from the response
                if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
                    token_text = chunk.choices[0].delta.content
                    if token_text:
                        # Print tokens inline without newlines
                        print(token_text, end="", flush=True)
                        response += token_text
                        yield response
        
        # Print a newline at the end of all tokens
        print()
    except Exception as e:
        print(f"Error during inference: {e}")
        response += f"\nError: {str(e)}"
        yield response

    print("Completed response generation.")

# Function to validate provider selection based on BYOK
def validate_provider(api_key, provider):
    # If no custom API key is provided, only "hf-inference" can be used
    if not api_key.strip() and provider != "hf-inference":
        return gr.update(value="hf-inference")
    return gr.update(value=provider)

# Function to update featured model list based on search
def filter_models(search_term):
    print(f"Filtering models with search term: {search_term}")
    filtered = [m for m in models_list if search_term.lower() in m.lower()]
    print(f"Filtered models: {filtered}")
    return gr.update(choices=filtered)

def set_custom_model_from_radio(selected):
    """
    This function will get triggered whenever someone picks a model from the 'Featured Models' radio.
    We will update the Custom Model text box with that selection automatically.
    """
    print(f"Featured model selected: {selected}")
    return selected

# Define multimodal models list
multimodal_models_list = [
    "meta-llama/Llama-3.3-70B-Vision-Instruct",
    "meta-llama/Llama-3.1-8B-Vision-Instruct",
    "Qwen/Qwen2.5-VL-7B-Chat",
    "Qwen/Qwen2.5-VL-3B-Chat",
    "microsoft/Phi-3-vision-instruct",
    "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "deepseek-ai/DeepSeek-VL-7B-Chat",
    "01-ai/Yi-VL-6B-Chat",
    "01-ai/Yi-VL-34B-Chat",
    "Cohere/command-vision-nightly",
    "LLaVA/llava-1.6-34b-hf",
    "fireworks-ai/FireworksBridge-Vision-Alpha",
    "liuhaotian/llava-v1.6-vicuna-13b",
]

# Add multimodal models to the full model list
models_list = [
    "meta-llama/Llama-3.3-70B-Instruct",
    "meta-llama/Llama-3.1-70B-Instruct",
    "meta-llama/Llama-3.0-70B-Instruct",
    "meta-llama/Llama-3.2-3B-Instruct",
    "meta-llama/Llama-3.2-1B-Instruct",
    "meta-llama/Llama-3.1-8B-Instruct",
    "NousResearch/Hermes-3-Llama-3.1-8B",
    "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
    "mistralai/Mistral-Nemo-Instruct-2407",
    "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "mistralai/Mistral-7B-Instruct-v0.3",
    "mistralai/Mistral-7B-Instruct-v0.2",
    "Qwen/Qwen3-235B-A22B",
    "Qwen/Qwen3-32B",
    "Qwen/Qwen2.5-72B-Instruct",
    "Qwen/Qwen2.5-3B-Instruct",
    "Qwen/Qwen2.5-0.5B-Instruct",
    "Qwen/QwQ-32B",
    "Qwen/Qwen2.5-Coder-32B-Instruct",
    "microsoft/Phi-3.5-mini-instruct",
    "microsoft/Phi-3-mini-128k-instruct",
    "microsoft/Phi-3-mini-4k-instruct",
    "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
    "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
    "HuggingFaceH4/zephyr-7b-beta",
    "HuggingFaceTB/SmolLM2-360M-Instruct",
    "tiiuae/falcon-7b-instruct",
    "01-ai/Yi-1.5-34B-Chat",
] + multimodal_models_list  # Add multimodal models to the list

# Create a custom ChatBot class that will display images
def format_history_with_images(history):
    """
    Format history for display in the chatbot, handling multimodal content
    """
    formatted_history = []
    
    for user_msg, assistant_msg in history:
        # Process user message
        if isinstance(user_msg, list):
            # Multimodal message
            formatted_user_msg = []
            for item in user_msg:
                if item.get("type") == "text":
                    formatted_user_msg.append(item["text"])
                elif item.get("type") == "image_url":
                    # Extract the base64 image data
                    img_url = item.get("image_url", {}).get("url", "")
                    if img_url.startswith("data:image/"):
                        formatted_user_msg.append((img_url, "image"))
            
            formatted_history.append((formatted_user_msg, assistant_msg))
        else:
            # Regular text message
            formatted_history.append((user_msg, assistant_msg))
    
    return formatted_history

# GRADIO UI

# Create a custom chatbot that can display images
chatbot = gr.Chatbot(
    height=600, 
    show_copy_button=True, 
    placeholder="Select a model and begin chatting",
    layout="panel"
)
print("Chatbot interface created.")

# Create a virtual column layout for the message input area
with gr.Blocks() as msg_input:
    with gr.Row():
        with gr.Column(scale=4):
            msg = gr.Textbox(
                placeholder="Enter text here or upload an image", 
                show_label=False,
                container=False,
                lines=3
            )
        with gr.Column(scale=1, min_width=50):
            img_upload = gr.Image(
                type="pil", 
                label="Upload Image",
                show_label=False,
                icon="🖼️",
                container=True,
                height=50,
                width=50
            )
            
# Basic input components
system_message_box = gr.Textbox(value="", placeholder="You are a helpful assistant.", label="System Prompt")

with gr.Accordion("Model Settings", open=False):
    with gr.Row():
        with gr.Column():
            max_tokens_slider = gr.Slider(
                minimum=1,
                maximum=4096,
                value=512,
                step=1,
                label="Max tokens"
            )
            
            temperature_slider = gr.Slider(
                minimum=0.1,
                maximum=4.0,
                value=0.7,
                step=0.1,
                label="Temperature"
            )
            
        with gr.Column():
            top_p_slider = gr.Slider(
                minimum=0.1,
                maximum=1.0,
                value=0.95,
                step=0.05,
                label="Top-P"
            )
            
            frequency_penalty_slider = gr.Slider(
                minimum=-2.0,
                maximum=2.0,
                value=0.0,
                step=0.1,
                label="Frequency Penalty"
            )
            
    with gr.Row():
        seed_slider = gr.Slider(
            minimum=-1,
            maximum=65535,
            value=-1,
            step=1,
            label="Seed (-1 for random)"
        )

with gr.Accordion("Model Selection", open=False):
    with gr.Row():
        with gr.Column():
            # Provider selection
            providers_list = [
                "hf-inference",  # Default Hugging Face Inference
                "cerebras",      # Cerebras provider
                "together",      # Together AI
                "sambanova",     # SambaNova
                "novita",        # Novita AI
                "cohere",        # Cohere
                "fireworks-ai",  # Fireworks AI
                "hyperbolic",    # Hyperbolic
                "nebius",        # Nebius
            ]
            
            provider_radio = gr.Radio(
                choices=providers_list,
                value="hf-inference",
                label="Inference Provider",
                info="[View all models here](https://huggingface.co/models?inference_provider=all&pipeline_tag=text-generation&sort=trending)"
            )
            
            # New BYOK textbox - Added for the new feature
            byok_textbox = gr.Textbox(
                value="",
                label="BYOK (Bring Your Own Key)",
                info="Enter a custom Hugging Face API key here. When empty, only 'hf-inference' provider can be used.",
                placeholder="Enter your Hugging Face API token",
                type="password"  # Hide the API key for security
            )
            
        with gr.Column():
            # Model selection components
            model_search_box = gr.Textbox(
                label="Filter Models",
                placeholder="Search for a featured model...",
                lines=1
            )
            
            featured_model_radio = gr.Radio(
                label="Select a model below",
                choices=models_list,
                value="meta-llama/Llama-3.3-70B-Vision-Instruct",  # Default to a multimodal model
                interactive=True
            )
            
            # Custom model box
            custom_model_box = gr.Textbox(
                value="",
                label="Custom Model",
                info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
                placeholder="meta-llama/Llama-3.3-70B-Vision-Instruct"
            )
            
            gr.Markdown("[See all multimodal models](https://huggingface.co/models?pipeline_tag=visual-question-answering&sort=trending)")

# Main Gradio interface
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
    gr.Markdown("# 🤖 Serverless-MultiModal-Hub")
    
    with gr.Row():
        with gr.Column(scale=3):
            # Display the chatbot
            chatbot_interface = chatbot
            
            # Custom submit function to handle multimodal inputs
            def submit_message(message, images, history):
                history = history or []
                
                # Format the message content based on whether there are images
                if images:
                    # Create a multimodal message format for history display
                    user_msg = []
                    if message:
                        user_msg.append({"type": "text", "text": message})
                    
                    # Add each image as an image_url item
                    for img in images:
                        if img is not None:
                            img_base64 = encode_image_to_base64(img)
                            img_url = f"data:image/jpeg;base64,{img_base64}"
                            user_msg.append({
                                "type": "image_url", 
                                "image_url": {"url": img_url}
                            })
                    
                    # Add to history
                    history.append([user_msg, None])
                else:
                    # Text-only message
                    if message:
                        history.append([message, None])
                    else:
                        # No content to submit
                        return history
                
                return history
            
            # Create message input
            with gr.Group():
                with gr.Row():
                    with gr.Column(scale=4):
                        text_input = gr.Textbox(
                            placeholder="Enter text here", 
                            show_label=False,
                            container=False,
                            lines=3
                        )
                    with gr.Column(scale=1, min_width=50):
                        image_input = gr.Image(
                            type="pil", 
                            label="Upload Image",
                            show_label=False,
                            sources=["upload", "clipboard"],
                            tool="editor",
                            height=100,
                            visible=True
                        )
            
            # Submit button
            submit_btn = gr.Button("Submit", variant="primary")
            
            # Clear button
            clear_btn = gr.Button("Clear")
            
        with gr.Column(scale=1):
            # Put settings here
            system_message_box = gr.Textbox(
                value="", 
                placeholder="You are a helpful assistant that can understand images.", 
                label="System Prompt",
                lines=2
            )
            
            with gr.Accordion("Model Selection", open=False):
                # Provider selection
                provider_radio = gr.Radio(
                    choices=providers_list,
                    value="hf-inference",
                    label="Inference Provider"
                )
                
                # BYOK textbox
                byok_textbox = gr.Textbox(
                    value="",
                    label="API Key",
                    placeholder="Enter provider API key",
                    type="password"
                )
                
                # Model selection components
                model_search_box = gr.Textbox(
                    label="Filter Models",
                    placeholder="Search models...",
                    lines=1
                )
                
                featured_model_radio = gr.Radio(
                    label="Models",
                    choices=models_list,
                    value="meta-llama/Llama-3.3-70B-Vision-Instruct",
                    interactive=True
                )
                
                custom_model_box = gr.Textbox(
                    value="",
                    label="Custom Model",
                    placeholder="Enter model path"
                )
                
                gr.Markdown("[View all multimodal models](https://huggingface.co/models?pipeline_tag=visual-question-answering&sort=trending)")
            
            with gr.Accordion("Model Settings", open=False):
                max_tokens_slider = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max tokens")
                temperature_slider = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
                top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P")
                frequency_penalty_slider = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
                seed_slider = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)")
    
    # Connect the submit button
    submit_btn.click(
        fn=submit_message, 
        inputs=[text_input, image_input, chatbot_interface], 
        outputs=[chatbot_interface],
        queue=False
    ).then(
        fn=respond,
        inputs=[
            text_input, 
            image_input,
            chatbot_interface,
            system_message_box,
            max_tokens_slider,
            temperature_slider,
            top_p_slider,
            frequency_penalty_slider,
            seed_slider,
            provider_radio,
            byok_textbox,
            custom_model_box,
            model_search_box,
            featured_model_radio
        ],
        outputs=[chatbot_interface],
        queue=True
    ).then(
        fn=lambda: (None, None),  # Clear inputs after submission
        inputs=None,
        outputs=[text_input, image_input]
    )
    
    # Clear button functionality
    clear_btn.click(lambda: None, None, chatbot_interface, queue=False)
    
    # Connect the model filter to update the radio choices
    model_search_box.change(
        fn=filter_models,
        inputs=model_search_box,
        outputs=featured_model_radio
    )

    # Connect the featured model radio to update the custom model box
    featured_model_radio.change(
        fn=set_custom_model_from_radio,
        inputs=featured_model_radio,
        outputs=custom_model_box
    )
    
    # Connect the BYOK textbox to validate provider selection
    byok_textbox.change(
        fn=validate_provider,
        inputs=[byok_textbox, provider_radio],
        outputs=provider_radio
    )

    # Also validate provider when the radio changes to ensure consistency
    provider_radio.change(
        fn=validate_provider,
        inputs=[byok_textbox, provider_radio],
        outputs=provider_radio
    )

if __name__ == "__main__":
    print("Launching Serverless-MultiModal-Hub application.")
    demo.launch(show_api=True)