File size: 16,631 Bytes
038f313
1cee504
c5a20a4
ea82e64
75bf974
 
 
038f313
db00df1
2d6eaa5
c6bdd15
75bf974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
038f313
27c8b8d
75bf974
27c8b8d
 
038f313
 
 
3a64d68
98674ca
9e12544
75bf974
9e12544
9eb0de2
 
038f313
0ef95ea
75bf974
2d6eaa5
0ef95ea
 
 
9e12544
75bf974
9e12544
d92e5cd
 
f7c4208
75bf974
9e12544
 
8eb1697
 
 
 
 
9e12544
 
ba0614b
 
901bafe
0ef95ea
 
038f313
75bf974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cee504
c5a20a4
2d6eaa5
901bafe
5b8ad4f
27c8b8d
2d6eaa5
 
 
a9862a1
75bf974
2d6eaa5
 
 
27c8b8d
a9862a1
75bf974
 
a9862a1
3f8952c
d92e5cd
5b8ad4f
0ef95ea
2d6eaa5
0ef95ea
1cee504
 
 
 
3b18f78
1cee504
 
 
 
2d6eaa5
1cee504
 
 
ba0614b
1cee504
 
 
5b8ad4f
 
1cee504
75bf974
1cee504
2d6eaa5
23119eb
 
1cee504
 
 
 
 
 
 
23119eb
1cee504
 
23119eb
 
1cee504
 
 
 
 
0ef95ea
901bafe
9e12544
 
 
 
 
 
a9862a1
75bf974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d6eaa5
75bf974
 
a9862a1
57fd5c0
75bf974
57fd5c0
 
 
 
 
 
75bf974
57fd5c0
 
 
 
 
 
 
 
 
 
75bf974
57fd5c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75bf974
57fd5c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9862a1
75bf974
 
 
 
 
 
 
 
 
d92e5cd
75bf974
 
 
 
b0cbd1c
75bf974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea82e64
75bf974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdab9dd
d92e5cd
 
 
ea82e64
d92e5cd
a9862a1
fdab9dd
 
ea82e64
7a4f867
ea82e64
7a4f867
 
a9862a1
9e12544
 
 
 
 
 
 
a9862a1
9e12544
 
 
 
 
 
 
a9862a1
 
 
769901b
77298b9
a9862a1
9e12544
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
import gradio as gr
from huggingface_hub import InferenceClient
import os
import json
import base64
from PIL import Image
import io

ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")

# Function to encode image to base64
def encode_image(image):
    if image is None:
        return None
    
    # Convert to PIL Image if needed
    if not isinstance(image, Image.Image):
        try:
            image = Image.open(image)
        except Exception as e:
            print(f"Error opening image: {e}")
            return None
    
    # Convert to RGB if image has an alpha channel (RGBA)
    if image.mode == 'RGBA':
        image = image.convert('RGB')
    
    # Encode to base64
    buffered = io.BytesIO()
    image.save(buffered, format="JPEG")
    img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
    return img_str

def respond(
    message,
    images, # New parameter for uploaded images
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    frequency_penalty,
    seed,
    provider,
    custom_api_key,
    custom_model,    
    model_search_term,
    selected_model
):
    print(f"Received message: {message}")
    print(f"Received {len(images) if images else 0} images")
    print(f"History: {history}")
    print(f"System message: {system_message}")
    print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
    print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
    print(f"Selected provider: {provider}")         
    print(f"Custom API Key provided: {bool(custom_api_key.strip())}")
    print(f"Selected model (custom_model): {custom_model}")  
    print(f"Model search term: {model_search_term}")
    print(f"Selected model from radio: {selected_model}")

    # Determine which token to use
    token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN
    
    if custom_api_key.strip() != "":
        print("USING CUSTOM API KEY: BYOK token provided by user is being used for authentication")
    else:
        print("USING DEFAULT API KEY: Environment variable HF_TOKEN is being used for authentication")
    
    # Initialize the Inference Client with the provider and appropriate token
    client = InferenceClient(token=token_to_use, provider=provider)
    print(f"Hugging Face Inference Client initialized with {provider} provider.")

    # Convert seed to None if -1 (meaning random)
    if seed == -1:
        seed = None

    # Create multimodal content if images are present
    if images and any(images):
        # Process the user message to include images
        user_content = []
        
        # Add text part if there is any
        if message and message.strip():
            user_content.append({
                "type": "text",
                "text": message
            })
        
        # Add image parts
        for img in images:
            if img is not None:
                encoded_image = encode_image(img)
                if encoded_image:
                    user_content.append({
                        "type": "image_url",
                        "image_url": {
                            "url": f"data:image/jpeg;base64,{encoded_image}"
                        }
                    })
    else:
        # Text-only message
        user_content = message

    # Prepare messages in the format expected by the API
    messages = [{"role": "system", "content": system_message}]
    print("Initial messages array constructed.")

    # Add conversation history to the context
    for val in history:
        user_part = val[0]
        assistant_part = val[1]
        if user_part:
            messages.append({"role": "user", "content": user_part})
            print(f"Added user message to context (type: {type(user_part)})")
        if assistant_part:
            messages.append({"role": "assistant", "content": assistant_part})
            print(f"Added assistant message to context: {assistant_part}")

    # Append the latest user message
    messages.append({"role": "user", "content": user_content})
    print(f"Latest user message appended (content type: {type(user_content)})")

    # Determine which model to use, prioritizing custom_model if provided
    model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
    print(f"Model selected for inference: {model_to_use}")

    # Start with an empty string to build the response as tokens stream in
    response = ""
    print(f"Sending request to {provider} provider.")

    # Prepare parameters for the chat completion request
    parameters = {
        "max_tokens": max_tokens,
        "temperature": temperature,
        "top_p": top_p,
        "frequency_penalty": frequency_penalty,
    }
    
    if seed is not None:
        parameters["seed"] = seed

    # Use the InferenceClient for making the request
    try:
        # Create a generator for the streaming response
        stream = client.chat_completion(
            model=model_to_use,
            messages=messages,
            stream=True,
            **parameters
        )
        
        print("Received tokens: ", end="", flush=True)
        
        # Process the streaming response
        for chunk in stream:
            if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
                # Extract the content from the response
                if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
                    token_text = chunk.choices[0].delta.content
                    if token_text:
                        print(token_text, end="", flush=True)
                        response += token_text
                        yield response
        
        print()
    except Exception as e:
        print(f"Error during inference: {e}")
        response += f"\nError: {str(e)}"
        yield response

    print("Completed response generation.")

# Function to validate provider selection based on BYOK
def validate_provider(api_key, provider):
    if not api_key.strip() and provider != "hf-inference":
        return gr.update(value="hf-inference")
    return gr.update(value=provider)

# GRADIO UI
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
    # Create the chatbot component
    chatbot = gr.Chatbot(
        height=600, 
        show_copy_button=True, 
        placeholder="Select a model and begin chatting",
        layout="panel"
    )
    print("Chatbot interface created.")
    
    with gr.Row():
        # Text input for messages
        msg = gr.Textbox(
            placeholder="Type a message...",
            show_label=False,
            container=False,
            scale=9
        )
        
        # Image upload button
        image_upload = gr.Image(
            type="filepath", 
            label="Upload Image",
            scale=1
        )

    # Send button for messages
    submit_btn = gr.Button("Send", variant="primary")

    # Create accordion for settings
    with gr.Accordion("Settings", open=False):
        # System message
        system_message_box = gr.Textbox(
            value="You are a helpful AI assistant that can understand images and text.", 
            placeholder="You are a helpful assistant.",
            label="System Prompt"
        )
        
        # Generation parameters
        with gr.Row():
            with gr.Column():
                max_tokens_slider = gr.Slider(
                    minimum=1,
                    maximum=4096,
                    value=512,
                    step=1,
                    label="Max tokens"
                )
                
                temperature_slider = gr.Slider(
                    minimum=0.1,
                    maximum=4.0,
                    value=0.7,
                    step=0.1,
                    label="Temperature"
                )
                
                top_p_slider = gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    value=0.95,
                    step=0.05,
                    label="Top-P"
                )
                
            with gr.Column():
                frequency_penalty_slider = gr.Slider(
                    minimum=-2.0,
                    maximum=2.0,
                    value=0.0,
                    step=0.1,
                    label="Frequency Penalty"
                )
                
                seed_slider = gr.Slider(
                    minimum=-1,
                    maximum=65535,
                    value=-1,
                    step=1,
                    label="Seed (-1 for random)"
                )
        
        # Provider selection
        providers_list = [
            "hf-inference",  # Default Hugging Face Inference
            "cerebras",      # Cerebras provider
            "together",      # Together AI
            "sambanova",     # SambaNova
            "novita",        # Novita AI
            "cohere",        # Cohere
            "fireworks-ai",  # Fireworks AI
            "hyperbolic",    # Hyperbolic
            "nebius",        # Nebius
        ]
        
        provider_radio = gr.Radio(
            choices=providers_list,
            value="hf-inference",
            label="Inference Provider",
            info="[View all models here](https://huggingface.co/models?inference_provider=all&sort=trending)"
        )
        
        # New BYOK textbox
        byok_textbox = gr.Textbox(
            value="",
            label="BYOK (Bring Your Own Key)",
            info="Enter a custom Hugging Face API key here. When empty, only 'hf-inference' provider can be used.",
            placeholder="Enter your Hugging Face API token",
            type="password"  # Hide the API key for security
        )
        
        # Custom model box
        custom_model_box = gr.Textbox(
            value="",
            label="Custom Model",
            info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
            placeholder="meta-llama/Llama-3.3-70B-Instruct"
        )
        
        # Model search
        model_search_box = gr.Textbox(
            label="Filter Models",
            placeholder="Search for a featured model...",
            lines=1
        )
        
        # Featured models list
        # Updated to include multimodal models
        models_list = [
            # Multimodal models
            "meta-llama/Llama-3.3-70B-Vision",
            "Alibaba-NLP/NephilaV-16B-Chat",
            "mistralai/Mistral-Large-Vision-2407",
            "OpenGVLab/InternVL-Chat-V1-5",
            "microsoft/Phi-3.5-vision-instruct",
            "Qwen/Qwen2.5-VL-7B-Instruct",
            "liuhaotian/llava-v1.6-mistral-7b",
            
            # Standard text models
            "meta-llama/Llama-3.3-70B-Instruct",
            "meta-llama/Llama-3.1-70B-Instruct",
            "meta-llama/Llama-3.0-70B-Instruct",
            "meta-llama/Llama-3.2-3B-Instruct",
            "meta-llama/Llama-3.2-1B-Instruct",
            "meta-llama/Llama-3.1-8B-Instruct",
            "NousResearch/Hermes-3-Llama-3.1-8B",
            "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
            "mistralai/Mistral-Nemo-Instruct-2407",
            "mistralai/Mixtral-8x7B-Instruct-v0.1",
            "mistralai/Mistral-7B-Instruct-v0.3",
            "mistralai/Mistral-7B-Instruct-v0.2",
            "Qwen/Qwen3-235B-A22B",
            "Qwen/Qwen3-32B",
            "Qwen/Qwen2.5-72B-Instruct",
            "Qwen/Qwen2.5-3B-Instruct",
            "Qwen/Qwen2.5-0.5B-Instruct",
            "Qwen/QwQ-32B",
            "Qwen/Qwen2.5-Coder-32B-Instruct",
            "microsoft/Phi-3.5-mini-instruct",
            "microsoft/Phi-3-mini-128k-instruct",
            "microsoft/Phi-3-mini-4k-instruct",
        ]

        featured_model_radio = gr.Radio(
            label="Select a model below",
            choices=models_list,
            value="meta-llama/Llama-3.3-70B-Vision",  # Default to a multimodal model
            interactive=True
        )
        
        gr.Markdown("[View all multimodal models](https://huggingface.co/models?pipeline_tag=image-to-text&sort=trending)")

    # Chat history state
    chat_history = gr.State([])
    
    # Function to filter models
    def filter_models(search_term):
        print(f"Filtering models with search term: {search_term}")
        filtered = [m for m in models_list if search_term.lower() in m.lower()]
        print(f"Filtered models: {filtered}")
        return gr.update(choices=filtered)

    # Function to set custom model from radio
    def set_custom_model_from_radio(selected):
        print(f"Featured model selected: {selected}")
        return selected

    # Function for the chat interface
    def user(user_message, image, history):
        if user_message == "" and image is None:
            return history
        
        # Format image reference for display
        img_placeholder = ""
        if image is not None:
            img_placeholder = f"![Image]({image})"
        
        # Combine text and image reference for display
        display_message = f"{user_message}\n{img_placeholder}" if img_placeholder else user_message
        
        # Return updated history
        return history + [[display_message, None]]
    
    # Define chat interface
    def bot(history, images, system_msg, max_tokens, temperature, top_p, freq_penalty, seed, provider, api_key, custom_model, search_term, selected_model):
        # Extract the last user message
        user_message = history[-1][0] if history and len(history) > 0 else ""
        
        # Clean up the user message to remove image reference
        if "![Image]" in user_message:
            text_parts = user_message.split("![Image]")[0].strip()
        else:
            text_parts = user_message
        
        # Process message through respond function
        history[-1][1] = ""
        for response in respond(
            text_parts,  # Send only the text part
            [images],    # Send images separately
            history[:-1],
            system_msg,
            max_tokens,
            temperature,
            top_p,
            freq_penalty,
            seed,
            provider,
            api_key,
            custom_model,
            search_term,
            selected_model
        ):
            history[-1][1] = response
            yield history

    # Event handlers
    msg.submit(
        user,
        [msg, image_upload, chatbot],
        [chatbot],
        queue=False
    ).then(
        bot,
        [chatbot, image_upload, system_message_box, max_tokens_slider, temperature_slider, top_p_slider, 
         frequency_penalty_slider, seed_slider, provider_radio, byok_textbox, custom_model_box, 
         model_search_box, featured_model_radio],
        [chatbot]
    )
    
    submit_btn.click(
        user,
        [msg, image_upload, chatbot],
        [chatbot],
        queue=False
    ).then(
        bot,
        [chatbot, image_upload, system_message_box, max_tokens_slider, temperature_slider, top_p_slider, 
         frequency_penalty_slider, seed_slider, provider_radio, byok_textbox, custom_model_box, 
         model_search_box, featured_model_radio],
        [chatbot]
    ).then(
        lambda: (None, "", None),  # Clear inputs after submission
        None,
        [msg, msg, image_upload]
    )
    
    # Connect the model filter to update the radio choices
    model_search_box.change(
        fn=filter_models,
        inputs=model_search_box,
        outputs=featured_model_radio
    )
    print("Model search box change event linked.")

    # Connect the featured model radio to update the custom model box
    featured_model_radio.change(
        fn=set_custom_model_from_radio,
        inputs=featured_model_radio,
        outputs=custom_model_box
    )
    print("Featured model radio button change event linked.")
    
    # Connect the BYOK textbox to validate provider selection
    byok_textbox.change(
        fn=validate_provider,
        inputs=[byok_textbox, provider_radio],
        outputs=provider_radio
    )
    print("BYOK textbox change event linked.")

    # Also validate provider when the radio changes to ensure consistency
    provider_radio.change(
        fn=validate_provider,
        inputs=[byok_textbox, provider_radio],
        outputs=provider_radio
    )
    print("Provider radio button change event linked.")

print("Gradio interface initialized.")

if __name__ == "__main__":
    print("Launching the demo application.")
    demo.launch(show_api=True)