File size: 23,852 Bytes
6fda968
233b170
 
 
1a948ca
 
d0dda9e
bf35ece
233b170
c7ab3f4
233b170
c7ab3f4
 
 
 
 
 
 
aeb6ce6
c7ab3f4
fc23f51
aeb6ce6
6c8b7ac
bf35ece
d0dda9e
 
 
 
c7ab3f4
d0dda9e
 
c7ab3f4
d0dda9e
 
 
 
 
 
 
 
 
 
bf35ece
 
 
 
 
 
 
78ec24e
bf35ece
78ec24e
bf35ece
 
 
78ec24e
c7ab3f4
 
 
2f13dbb
c4ba210
 
233b170
c4ba210
 
 
78ec24e
6fda968
1c04950
6c8b7ac
d0dda9e
1a948ca
233b170
d0dda9e
 
 
 
6be577f
d0dda9e
c7ab3f4
 
 
 
 
d0dda9e
 
 
 
 
 
 
 
 
6be577f
d0dda9e
 
 
 
 
c7ab3f4
d0dda9e
 
 
 
c7ab3f4
d0dda9e
c7ab3f4
 
 
d0dda9e
 
 
 
e0deddf
6be577f
d0dda9e
 
6be577f
1a948ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0dda9e
d79cd74
6c8b7ac
d79cd74
 
c7ab3f4
 
 
 
d79cd74
 
c7ab3f4
d79cd74
 
 
 
c7ab3f4
d79cd74
 
 
 
 
 
 
 
c7ab3f4
 
 
d79cd74
 
 
 
 
c7ab3f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d79cd74
 
 
 
 
c7ab3f4
d79cd74
 
 
 
 
c7ab3f4
d79cd74
d0dda9e
d79cd74
c7ab3f4
d79cd74
c7ab3f4
 
 
d79cd74
 
 
c7ab3f4
d79cd74
 
c7ab3f4
 
 
d0dda9e
d79cd74
 
 
c7ab3f4
 
 
 
 
 
d0dda9e
 
 
 
 
 
 
 
6be577f
233b170
1a948ca
78ec24e
233b170
78ec24e
6fda968
1a948ca
 
 
3960a1f
1a948ca
 
 
 
 
 
 
3960a1f
 
 
 
1a948ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3960a1f
 
 
 
 
 
 
1a948ca
 
3960a1f
1a948ca
 
3960a1f
 
 
 
 
 
 
1a948ca
 
 
 
 
 
 
 
 
 
 
1c04950
1a948ca
 
 
 
 
 
 
 
 
 
 
1c04950
1a948ca
3960a1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a948ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c04950
1a948ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c04950
6fda968
1a948ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f48959
c7ab3f4
8f48959
 
 
c7ab3f4
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
import streamlit as st
import json
import os
import time
import pandas as pd
import altair as alt
import re
from pathlib import Path

from geo_bot import GeoBot
from benchmark import MapGuesserBenchmark
from config import (
    MODELS_CONFIG,
    get_data_paths,
    SUCCESS_THRESHOLD_KM,
    get_model_class,
    DEFAULT_MODEL,
    DEFAULT_TEMPERATURE,
    setup_environment_variables,
)

setup_environment_variables(st.secrets)


def convert_google_to_mapcrunch_url(google_url):
    """Convert Google Maps URL to MapCrunch URL format."""
    try:
        # Extract coordinates using regex
        match = re.search(r"@(-?\d+\.\d+),(-?\d+\.\d+)", google_url)
        if not match:
            return None

        lat, lon = match.groups()
        # MapCrunch format: lat_lon_heading_pitch_zoom
        # Using default values for heading (317.72), pitch (0.86), and zoom (0)
        mapcrunch_url = f"http://www.mapcrunch.com/p/{lat}_{lon}_317.72_0.86_0"
        return mapcrunch_url
    except Exception as e:
        st.error(f"Error converting URL: {str(e)}")
        return None


def get_available_datasets():
    datasets_dir = Path("datasets")
    if not datasets_dir.exists():
        return ["default"]
    datasets = []
    for dataset_dir in datasets_dir.iterdir():
        if dataset_dir.is_dir():
            data_paths = get_data_paths(dataset_dir.name)
            if os.path.exists(data_paths["golden_labels"]):
                datasets.append(dataset_dir.name)
    return datasets if datasets else ["default"]


# UI Setup
st.set_page_config(
    page_title="๐Ÿง  Omniscient - Multiturn Geographic Intelligence", layout="wide"
)
st.title("๐Ÿง  Omniscient")
st.markdown("""
### *An all-seeing AI agent for geographic analysis and deduction*

Omniscient engages in a multi-turn reasoning process โ€” collecting visual clues, asking intelligent questions, and narrowing down locations step by step.  
Whether it's identifying terrain, interpreting signs, or tracing road patterns, this AI agent learns, adapts, and solves like a true geo-detective.
""")
# Sidebar
with st.sidebar:
    st.header("Configuration")

    # Mode selection
    mode = st.radio("Mode", ["Dataset Mode", "Online Mode", "Test Mode"], index=0)

    if mode == "Dataset Mode":
        # Get available datasets and ensure we have a valid default
        available_datasets = get_available_datasets()
        default_dataset = available_datasets[0] if available_datasets else "default"

        dataset_choice = st.selectbox("Dataset", available_datasets, index=0)
        model_choice = st.selectbox(
            "Model",
            list(MODELS_CONFIG.keys()),
            index=list(MODELS_CONFIG.keys()).index(DEFAULT_MODEL),
        )
        steps_per_sample = st.slider("Max Steps", 1, 20, 10)
        temperature = st.slider(
            "Temperature",
            0.0,
            2.0,
            DEFAULT_TEMPERATURE,
            0.1,
            help="Controls randomness in AI responses. 0.0 = deterministic, higher = more creative",
        )

        # Load dataset with error handling
        data_paths = get_data_paths(dataset_choice)
        try:
            with open(data_paths["golden_labels"], "r") as f:
                golden_labels = json.load(f).get("samples", [])

            st.info(f"Dataset '{dataset_choice}' has {len(golden_labels)} samples")
            if len(golden_labels) == 0:
                st.error(f"Dataset '{dataset_choice}' contains no samples!")
                st.stop()

        except FileNotFoundError:
            st.error(
                f"โŒ Dataset '{dataset_choice}' not found at {data_paths['golden_labels']}"
            )
            st.info("๐Ÿ’ก Available datasets: " + ", ".join(available_datasets))
            st.stop()
        except Exception as e:
            st.error(f"โŒ Error loading dataset '{dataset_choice}': {str(e)}")
            st.stop()

        num_samples = st.slider(
            "Samples to Test", 1, len(golden_labels), min(3, len(golden_labels))
        )

    elif mode == "Test Mode":
        st.info("๐Ÿ”ฌ Multi-Model Benchmark Testing")
        available_datasets = get_available_datasets()
        dataset_choice = st.selectbox("Dataset", available_datasets, index=0)

        selected_models = st.multiselect(
            "Select Models to Compare",
            list(MODELS_CONFIG.keys()),
            default=[DEFAULT_MODEL],
        )
        if not selected_models:
            st.warning("Please select at least one model to run the test.")
            st.stop()

        steps_per_sample = st.slider("Max Steps", 1, 50, 10)
        temperature = st.slider(
            "Temperature",
            0.0,
            2.0,
            DEFAULT_TEMPERATURE,
            0.1,
            help="Controls randomness in AI responses. 0.0 = deterministic, higher = more creative",
        )

        # load dataset
        data_paths = get_data_paths(dataset_choice)
        try:
            with open(data_paths["golden_labels"], "r") as f:
                golden_labels = json.load(f).get("samples", [])
            st.success(f"Dataset '{dataset_choice}' loaded with {len(golden_labels)} samples")
        except Exception as e:
            st.error(f"Error loading dataset '{dataset_choice}': {str(e)}")
            st.stop()
        num_samples = st.slider("Samples per Run", 1, len(golden_labels), min(10, len(golden_labels)))
        runs_per_model = st.slider("Runs per Model", 1, 10, 5)
        
    else:  # Online Mode
        st.info("Enter a URL to analyze a specific location")

        # Add example URLs
        example_google_url = "https://www.google.com/maps/@37.8728123,-122.2445339,3a,75y,3.36h,90t/data=!3m7!1e1!3m5!1s4DTABKOpCL6hdNRgnAHTgw!2e0!6shttps:%2F%2Fstreetviewpixels-pa.googleapis.com%2Fv1%2Fthumbnail%3Fcb_client%3Dmaps_sv.tactile%26w%3D900%26h%3D600%26pitch%3D0%26panoid%3D4DTABKOpCL6hdNRgnAHTgw%26yaw%3D3.3576431!7i13312!8i6656?entry=ttu"
        example_mapcrunch_url = (
            "http://www.mapcrunch.com/p/37.882284_-122.269626_293.91_-6.63_0"
        )

        # Create tabs for different URL types
        input_tab1, input_tab2 = st.tabs(["Google Maps URL", "MapCrunch URL"])

        google_url = ""
        mapcrunch_url = ""
        golden_labels = None
        num_samples = None

        with input_tab1:
            url_col1, url_col2 = st.columns([3, 1])
            with url_col1:
                google_url = st.text_input(
                    "Google Maps URL",
                    placeholder="https://www.google.com/maps/@37.5851338,-122.1519467,9z?entry=ttu",
                    key="google_maps_url",
                )
            st.markdown(
                f"๐Ÿ’ก **Example Location:** [View in Google Maps]({example_google_url})"
            )
            if google_url:
                mapcrunch_url_converted = convert_google_to_mapcrunch_url(google_url)
                if mapcrunch_url_converted:
                    st.success(f"Converted to MapCrunch URL: {mapcrunch_url_converted}")
                    try:
                        match = re.search(r"@(-?\d+\.\d+),(-?\d+\.\d+)", google_url)
                        if not match:
                            st.error("Invalid Google Maps URL format")
                            st.stop()

                        lat, lon = match.groups()

                        golden_labels = [
                            {
                                "id": "online",
                                "lat": float(lat),
                                "lng": float(lon),
                                "url": mapcrunch_url_converted,
                            }
                        ]
                        num_samples = 1
                    except Exception as e:
                        st.error(f"Invalid Google Maps URL format: {str(e)}")
                else:
                    st.error("Invalid Google Maps URL format")

        with input_tab2:
            st.markdown("๐Ÿ’ก **Example Location:**")
            st.markdown(f"[View in MapCrunch]({example_mapcrunch_url})")
            st.code(example_mapcrunch_url, language="text")
            mapcrunch_url = st.text_input(
                "MapCrunch URL", placeholder=example_mapcrunch_url, key="mapcrunch_url"
            )
            if mapcrunch_url:
                try:
                    coords = mapcrunch_url.split("/")[-1].split("_")
                    lat, lon = float(coords[0]), float(coords[1])
                    golden_labels = [
                        {"id": "online", "lat": lat, "lng": lon, "url": mapcrunch_url}
                    ]
                    num_samples = 1
                except Exception as e:
                    st.error(f"Invalid MapCrunch URL format: {str(e)}")

        # Only stop if neither input is provided
        if not google_url and not mapcrunch_url:
            st.warning(
                "Please enter a Google Maps URL or MapCrunch URL, or use the example above."
            )
            st.stop()
        if golden_labels is None or num_samples is None:
            st.warning("Please enter a valid URL.")
            st.stop()

        model_choice = st.selectbox(
            "Model",
            list(MODELS_CONFIG.keys()),
            index=list(MODELS_CONFIG.keys()).index(DEFAULT_MODEL),
        )
        steps_per_sample = st.slider("Max Steps", 1, 20, 10)
        temperature = st.slider(
            "Temperature",
            0.0,
            2.0,
            DEFAULT_TEMPERATURE,
            0.1,
            help="Controls randomness in AI responses. 0.0 = deterministic, higher = more creative",
        )

    # common start button
    start_button = st.button("๐Ÿš€ Start", type="primary")

# Main Logic
if start_button:
    if mode == "Test Mode":
        benchmark_helper = MapGuesserBenchmark(dataset_name=dataset_choice)
        summary_by_step = {}
        avg_distance_by_step = {}  
        progress_bar = st.progress(0)
        for mi, model_name in enumerate(selected_models):
            st.header(f"Model: {model_name}")
            config = MODELS_CONFIG[model_name]
            model_class = get_model_class(config["class"])
            
            successes_per_step = [0]*steps_per_sample
            
            dist_sum_per_step = [0.0]*steps_per_sample
            dist_cnt_per_step = [0]*steps_per_sample

            total_iterations = runs_per_model * num_samples
            model_bar = st.progress(0, text=f"Running {model_name}")
            iteration_counter = 0
            for run_idx in range(runs_per_model):
                with GeoBot(model=model_class, model_name=config["model_name"], headless=True, temperature=temperature) as bot:
                    for si, sample in enumerate(golden_labels[:num_samples]):
                        if not bot.controller.load_location_from_data(sample):
                            iteration_counter += 1
                            model_bar.progress(iteration_counter/total_iterations)
                            continue
                        predictions = bot.test_run_agent_loop(max_steps=steps_per_sample)
                        true_coords = {"lat": sample["lat"], "lng": sample["lng"]}
                        for step_idx, pred in enumerate(predictions):
                            if isinstance(pred, dict) and "lat" in pred:
                                dist = benchmark_helper.calculate_distance(true_coords, (pred["lat"], pred["lon"]))
                                if dist is not None:
                                    # ๆ–ฐๅขž๏ผš็ดฏ่ฎก่ท็ฆปไธŽ่ฎกๆ•ฐ
                                    dist_sum_per_step[step_idx] += dist
                                    dist_cnt_per_step[step_idx] += 1
                                    # ๅŽŸๆœ‰๏ผšๆˆๅŠŸๆ•ฐ
                                    if dist <= SUCCESS_THRESHOLD_KM:
                                        successes_per_step[step_idx] += 1
                        iteration_counter += 1
                        model_bar.progress(iteration_counter/total_iterations)
            
            acc_per_step = [s/(num_samples*runs_per_model) for s in successes_per_step]
            summary_by_step[model_name] = acc_per_step

            avg_per_step = [
                (dist_sum_per_step[i]/dist_cnt_per_step[i]) if dist_cnt_per_step[i] else None
                for i in range(steps_per_sample)
            ]
            avg_distance_by_step[model_name] = avg_per_step

            progress_bar.progress((mi+1)/len(selected_models))
        # plot
        st.subheader("Accuracy vs Steps")

        # summary_by_step {model: [acc_step1, acc_step2, ...]}
        df_wide = pd.DataFrame(summary_by_step)
        df_long = (
            df_wide
            .reset_index(names="Step")      
            .melt(id_vars="Step", var_name="Model", value_name="Accuracy")
        )

        chart = (
            alt.Chart(df_long)
            .mark_line(point=True)
            .encode(
                x=alt.X("Step:O", title="Step #"),
                y=alt.Y("Accuracy:Q", title="Accuracy", scale=alt.Scale(domain=[0, 1])),
                color=alt.Color("Model:N", title="Model"),
                tooltip=["Model:N", "Step:O", alt.Tooltip("Accuracy:Q", format=".2%")],
            )
            .properties(width=700, height=400)
        )

        st.altair_chart(chart, use_container_width=True)

        st.subheader("Average Distance vs Steps (km)")
        df_wide_dist = pd.DataFrame(avg_distance_by_step)
        df_long_dist = (
            df_wide_dist
            .reset_index(names="Step")
            .melt(id_vars="Step", var_name="Model", value_name="AvgDistanceKm")
        )
        dist_chart = (
            alt.Chart(df_long_dist)
            .mark_line(point=True)
            .encode(
                x=alt.X("Step:O", title="Step #"),
                y=alt.Y("AvgDistanceKm:Q", title="Avg Distance (km)", scale=alt.Scale(zero=True)),
                color=alt.Color("Model:N", title="Model"),
                tooltip=["Model:N", "Step:O", alt.Tooltip("AvgDistanceKm:Q", format=".1f")],
            )
            .properties(width=700, height=400)
        )
        st.altair_chart(dist_chart, use_container_width=True)
        st.stop()
    
    else:
        test_samples = golden_labels[:num_samples]
        config = MODELS_CONFIG[model_choice]
        model_class = get_model_class(config["class"])

        benchmark_helper = MapGuesserBenchmark(
            dataset_name=dataset_choice if mode == "Dataset Mode" else "online"
        )
        all_results = []

        progress_bar = st.progress(0)

        with GeoBot(
            model=model_class,
            model_name=config["model_name"],
            headless=True,
            temperature=temperature,
        ) as bot:
            for i, sample in enumerate(test_samples):
                st.divider()
                st.header(f"Sample {i + 1}/{num_samples}")

                if mode == "Online Mode":
                    # Load the MapCrunch URL directly
                    bot.controller.load_url(sample["url"])
                else:
                    # Load from dataset as before
                    bot.controller.load_location_from_data(sample)

                bot.controller.setup_clean_environment()

                # Create containers for UI updates
                sample_container = st.container()

                # Initialize UI state for this sample
                step_containers = {}
                sample_steps_data = []

                def ui_step_callback(step_info):
                    """Callback function to update UI after each step"""
                    step_num = step_info["step_num"]

                    # Store step data
                    sample_steps_data.append(step_info)

                    with sample_container:
                        # Create step container if it doesn't exist
                        if step_num not in step_containers:
                            step_containers[step_num] = st.container()

                        with step_containers[step_num]:
                            st.subheader(f"Step {step_num}/{step_info['max_steps']}")

                            col1, col2 = st.columns([1, 2])

                            with col1:
                                # Display screenshot
                                st.image(
                                    step_info["screenshot_bytes"],
                                    caption=f"What AI sees - Step {step_num}",
                                    use_column_width=True,
                                )

                            with col2:
                                # Show available actions
                                st.write("**Available Actions:**")
                                st.code(
                                    json.dumps(step_info["available_actions"], indent=2)
                                )

                                # Show history context - use the history from step_info
                                current_history = step_info.get("history", [])
                                history_text = bot.generate_history_text(current_history)
                                st.write("**AI Context:**")
                                st.text_area(
                                    "History",
                                    history_text,
                                    height=100,
                                    disabled=True,
                                    key=f"history_{i}_{step_num}",
                                )

                                # Show AI reasoning and action
                                action = step_info.get("action_details", {}).get(
                                    "action", "N/A"
                                )

                                if step_info.get("is_final_step") and action != "GUESS":
                                    st.warning("Max steps reached. Forcing GUESS.")

                                st.write("**AI Reasoning:**")
                                st.info(step_info.get("reasoning", "N/A"))
                                if step_info.get("debug_message") != "N/A":
                                    st.write("**AI Debug Message:**")
                                    st.code(step_info.get("debug_message"), language="json")
                                st.write("**AI Action:**")
                                if action == "GUESS":
                                    lat = step_info.get("action_details", {}).get("lat")
                                    lon = step_info.get("action_details", {}).get("lon")
                                    st.success(f"`{action}` - {lat:.4f}, {lon:.4f}")
                                else:
                                    st.success(f"`{action}`")

                                # Show decision details for debugging
                                with st.expander("Decision Details"):
                                    decision_data = {
                                        "reasoning": step_info.get("reasoning"),
                                        "action_details": step_info.get("action_details"),
                                        "remaining_steps": step_info.get("remaining_steps"),
                                    }
                                    st.json(decision_data)

                    # Force UI refresh
                    time.sleep(0.5)  # Small delay to ensure UI updates are visible

                # Run the agent loop with UI callback
                try:
                    final_guess = bot.run_agent_loop(
                        max_steps=steps_per_sample, step_callback=ui_step_callback
                    )
                except Exception as e:
                    st.error(f"Error during agent execution: {e}")
                    final_guess = None

                # Sample Results
                with sample_container:
                    st.subheader("Sample Result")
                    true_coords = {"lat": sample.get("lat"), "lng": sample.get("lng")}
                    distance_km = None
                    is_success = False

                    if final_guess:
                        distance_km = benchmark_helper.calculate_distance(
                            true_coords, final_guess
                        )
                        if distance_km is not None:
                            is_success = distance_km <= SUCCESS_THRESHOLD_KM

                        col1, col2, col3 = st.columns(3)
                        col1.metric(
                            "Final Guess", f"{final_guess[0]:.3f}, {final_guess[1]:.3f}"
                        )
                        col2.metric(
                            "Ground Truth",
                            f"{true_coords['lat']:.3f}, {true_coords['lng']:.3f}",
                        )
                        col3.metric(
                            "Distance",
                            f"{distance_km:.1f} km",
                            delta="Success" if is_success else "Failed",
                        )
                    else:
                        st.error("No final guess made")

                    all_results.append(
                        {
                            "sample_id": sample.get("id"),
                            "model": model_choice,
                            "steps_taken": len(sample_steps_data),
                            "max_steps": steps_per_sample,
                            "temperature": temperature,
                            "true_coordinates": true_coords,
                            "predicted_coordinates": final_guess,
                            "distance_km": distance_km,
                            "success": is_success,
                        }
                    )

                progress_bar.progress((i + 1) / num_samples)

        # Final Summary
        st.divider()
        st.header("๐Ÿ Final Results")

        # Calculate summary stats
        successes = [r for r in all_results if r["success"]]
        success_rate = len(successes) / len(all_results) if all_results else 0

        valid_distances = [
            r["distance_km"] for r in all_results if r["distance_km"] is not None
        ]
        avg_distance = sum(valid_distances) / len(valid_distances) if valid_distances else 0

        # Overall metrics
        col1, col2, col3 = st.columns(3)
        col1.metric("Success Rate", f"{success_rate * 100:.1f}%")
        col2.metric("Average Distance", f"{avg_distance:.1f} km")
        col3.metric("Total Samples", len(all_results))

        # Detailed results table
        st.subheader("Detailed Results")
        st.dataframe(all_results, use_container_width=True)

        # Success/failure breakdown
        if successes:
            st.subheader("โœ… Successful Samples")
            st.dataframe(successes, use_container_width=True)

        failures = [r for r in all_results if not r["success"]]
        if failures:
            st.subheader("โŒ Failed Samples")
            st.dataframe(failures, use_container_width=True)

        # Export functionality
        if st.button("๐Ÿ’พ Export Results"):
            results_json = json.dumps(all_results, indent=2)
            st.download_button(
                label="Download results.json",
                data=results_json,
                file_name=f"geo_results_{dataset_choice}_{model_choice}_{num_samples}samples.json",
                mime="application/json",
            )


def handle_tab_completion():
    """Handle tab completion for the Google Maps URL input."""
    if st.session_state.google_maps_url == "":
        st.session_state.google_maps_url = (
            "https://www.google.com/maps/@37.5851338,-122.1519467,9z?entry=ttu"
        )