File size: 11,986 Bytes
ad315e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dab49a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad315e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
addc7ac
ad315e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ce14dd
 
ad315e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9411126
ad315e1
 
9411126
ad315e1
 
 
 
d1d9ba1
 
ad315e1
 
 
6ce14dd
ad315e1
070f348
ad315e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import gradio as gr
import spaces
import yaml
import random
import argparse
import os
import torch
import librosa
from tqdm import tqdm
from diffusers import DDIMScheduler
from solospeech.model.solospeech.conditioners import SoloSpeech_TSE
from solospeech.model.solospeech.conditioners import SoloSpeech_TSR
from solospeech.scripts.solospeech.utils import save_audio
import shutil
from solospeech.vae_modules.autoencoder_wrapper import Autoencoder
import pandas as pd
from speechbrain.pretrained.interfaces import Pretrained
from solospeech.corrector.fastgeco.model import ScoreModel
from solospeech.corrector.geco.util.other import pad_spec
from huggingface_hub import snapshot_download
import time


class Encoder(Pretrained):

    MODULES_NEEDED = [
        "compute_features",
        "mean_var_norm",
        "embedding_model"
    ]

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    def encode_batch(self, wavs, wav_lens=None, normalize=False):
        # Manage single waveforms in input
        if len(wavs.shape) == 1:
            wavs = wavs.unsqueeze(0)

        # Assign full length if wav_lens is not assigned
        if wav_lens is None:
            wav_lens = torch.ones(wavs.shape[0], device=self.device)

        # Storing waveform in the specified device
        wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
        wavs = wavs.float()

        # Computing features and embeddings
        feats = self.mods.compute_features(wavs)
        feats = self.mods.mean_var_norm(feats, wav_lens)
        embeddings = self.mods.embedding_model(feats, wav_lens)
        if normalize:
            embeddings = self.hparams.mean_var_norm_emb(
                embeddings,
                torch.ones(embeddings.shape[0], device=self.device)
            )
        return embeddings


parser = argparse.ArgumentParser()
# pre-trained model path
parser.add_argument('--eta', type=int, default=0)
parser.add_argument("--num_infer_steps", type=int, default=200)
parser.add_argument('--sample-rate', type=int, default=16000)
# random seed
parser.add_argument('--random-seed', type=int, default=42, help="Fixed seed")
args = parser.parse_args()

print("Downloading model from Huggingface...")
local_dir = snapshot_download(
    repo_id="OpenSound/SoloSpeech-models"
)
args.tse_config = os.path.join(local_dir, "config_extractor.yaml")
args.tsr_config = os.path.join(local_dir, "config_tsr.yaml")
args.vae_config = os.path.join(local_dir, "config_compressor.json")
args.autoencoder_path = os.path.join(local_dir, "compressor.ckpt")
args.tse_ckpt = os.path.join(local_dir, "extractor.pt")
args.tsr_ckpt = os.path.join(local_dir, "tsr.pt")
args.geco_ckpt = os.path.join(local_dir, "corrector.ckpt")

device = "cuda:0" if torch.cuda.is_available() else "cpu"
print(f"Device: {device}")
# load config
print("Loading models...")
with open(args.tse_config, 'r') as fp:
    args.tse_config = yaml.safe_load(fp)
with open(args.tsr_config, 'r') as fp:
    args.tsr_config = yaml.safe_load(fp)
args.v_prediction = args.tse_config["ddim"]["v_prediction"]
# load compressor
autoencoder = Autoencoder(args.autoencoder_path, args.vae_config, 'stft_vae', quantization_first=True)
autoencoder.eval()
autoencoder.to(device)
# load extractor
tse_model = SoloSpeech_TSE(
    args.tse_config['diffwrap']['UDiT'],
    args.tse_config['diffwrap']['ViT'],
).to(device)
tse_model.load_state_dict(torch.load(args.tse_ckpt)['model'])
tse_model.eval()
# load tsr model
tsr_model = SoloSpeech_TSR(
    args.tsr_config['diffwrap']['UDiT']
).to(device)
tsr_model.load_state_dict(torch.load(args.tsr_ckpt)['model'])
tsr_model.eval()
# load corrector
geco_model = ScoreModel.load_from_checkpoint(
    args.geco_ckpt,
    batch_size=1, num_workers=0, kwargs=dict(gpu=False)
)
geco_model.eval(no_ema=False)
geco_model.cuda()
# load sid model
ecapatdnn_model = Encoder.from_hparams(source="yangwang825/ecapa-tdnn-vox2")
cosine_sim = torch.nn.CosineSimilarity(dim=-1)
# load diffusion tools
noise_scheduler = DDIMScheduler(**args.tse_config["ddim"]['diffusers'])
# these steps reset dtype of noise_scheduler params
latents = torch.randn((1, 128, 128),
                        device=device)
noise = torch.randn(latents.shape).to(device)
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps,
                            (noise.shape[0],),
                            device=latents.device).long()
_ = noise_scheduler.add_noise(latents, noise, timesteps)



@spaces.GPU
def sample_diffusion(tse_model, tsr_model, autoencoder, std, scheduler, device,
                     mixture=None, reference=None, lengths=None, reference_lengths=None, 
                     ddim_steps=50, eta=0, seed=2025
                     ):
    with torch.no_grad():
        generator = torch.Generator(device=device).manual_seed(seed)
        scheduler.set_timesteps(ddim_steps)
        tse_pred = torch.randn(mixture.shape, generator=generator, device=device)
        tsr_pred = torch.randn(mixture.shape, generator=generator, device=device)

        for t in scheduler.timesteps:
            tse_pred = scheduler.scale_model_input(tse_pred, t)
            model_output, _ = tse_model(
                x=tse_pred, 
                timesteps=t, 
                mixture=mixture, 
                reference=reference, 
                x_len=lengths, 
                ref_len=reference_lengths
                )
            tse_pred = scheduler.step(model_output=model_output, timestep=t, sample=tse_pred,
                                    eta=eta, generator=generator).prev_sample
        
        for t in scheduler.timesteps:
            tsr_pred = scheduler.scale_model_input(tsr_pred, t)
            model_output, _ = tsr_model(
                x=tsr_pred, 
                timesteps=t, 
                mixture=mixture, 
                reference=tse_pred, 
                x_len=lengths, 
                )
            tsr_pred = scheduler.step(model_output=model_output, timestep=t, sample=tsr_pred,
                                    eta=eta, generator=generator).prev_sample

        tse_pred = autoencoder(embedding=tse_pred.transpose(2,1), std=std).squeeze(1)
        tsr_pred = autoencoder(embedding=tsr_pred.transpose(2,1), std=std).squeeze(1)

        return tse_pred, tsr_pred

@spaces.GPU
def tse(test_wav, enroll_wav):
    print("Start Extraction...")
    start_time = time.time()
    mixture, _ = librosa.load(test_wav, sr=16000)
    reference, _ = librosa.load(enroll_wav, sr=16000)
    reference_wav = reference
    reference = torch.tensor(reference).unsqueeze(0).to(device)
    with torch.no_grad():
        # compressor
        reference, _ = autoencoder(audio=reference.unsqueeze(1))
        reference_lengths = torch.LongTensor([reference.shape[-1]]).to(device)
        mixture_input = torch.tensor(mixture).unsqueeze(0).to(device)
        mixture_wav = mixture_input
        mixture_input, std = autoencoder(audio=mixture_input.unsqueeze(1))
        lengths = torch.LongTensor([mixture_input.shape[-1]]).to(device)   
        # extractor
        tse_pred, tsr_pred = sample_diffusion(tse_model, tsr_model, autoencoder, std, noise_scheduler, device, mixture_input.transpose(2,1), reference.transpose(2,1), lengths, reference_lengths, ddim_steps=args.num_infer_steps, eta=args.eta, seed=args.random_seed)
        ecapatdnn_embedding1 = ecapatdnn_model.encode_batch(tse_pred.squeeze()).squeeze()
        ecapatdnn_embedding2 = ecapatdnn_model.encode_batch(tsr_pred.squeeze()).squeeze()
        ecapatdnn_embedding3 = ecapatdnn_model.encode_batch(torch.tensor(reference_wav)).squeeze()
        sim1 = cosine_sim(ecapatdnn_embedding1, ecapatdnn_embedding3).item()
        sim2 = cosine_sim(ecapatdnn_embedding2, ecapatdnn_embedding3).item()
        pred = tse_pred if sim1 > sim2 else tsr_pred
        # corrector
        min_leng = min(pred.shape[-1], mixture_wav.shape[-1])
        x = pred[...,:min_leng]
        m = mixture_wav[...,:min_leng]
        norm_factor = m.abs().max()
        x = x / norm_factor
        m = m / norm_factor 
        X = torch.unsqueeze(geco_model._forward_transform(geco_model._stft(x.cuda())), 0)
        X = pad_spec(X)
        M = torch.unsqueeze(geco_model._forward_transform(geco_model._stft(m.cuda())), 0)
        M = pad_spec(M)
        timesteps = torch.linspace(0.5, 0.03, 1, device=M.device)
        std = geco_model.sde._std(0.5*torch.ones((M.shape[0],), device=M.device))
        z = torch.randn_like(M)
        X_t = M + z * std[:, None, None, None]

        for idx in range(len(timesteps)):
            t = timesteps[idx]
            if idx != len(timesteps) - 1:
                dt = t - timesteps[idx+1]
            else:
                dt = timesteps[-1]
            with torch.no_grad():
                f, g = geco_model.sde.sde(X_t, t, M)
                vec_t = torch.ones(M.shape[0], device=M.device) * t 
                mean_x_tm1 = X_t - (f - g**2*geco_model.forward(X_t, vec_t, M, X, vec_t[:,None,None,None]))*dt
                if idx == len(timesteps) - 1:
                    X_t = mean_x_tm1 
                    break
                z = torch.randn_like(X) 
                X_t = mean_x_tm1 + z*g*torch.sqrt(dt)

        sample = X_t
        sample = sample.squeeze()
        x_hat = geco_model.to_audio(sample.squeeze(), min_leng)
        x_hat = x_hat * norm_factor / x_hat.abs().max()
        x_hat = x_hat.detach().cpu().squeeze().numpy()

        end_time = time.time()
        audio_len = x_hat.shape[-1] / 16000
        rtf = (end_time-start_time)/audio_len
        print(f"RTF: {rtf:.4f}")
        return (16000, x_hat)


@spaces.GPU
def process_audio(test_wav, enroll_wav):
    result = tse(test_wav, enroll_wav)
    return result


# List of demo audio files
demo_audio_files = [
    ("Test Demo 1", "test1.wav", "test1_enroll.wav"),
    ("Test Demo 2", "test2.wav", "test2_enroll.wav")
]

def update_audio_input(choice):
    return choice

# CSS styling (optional)
css = """
#col-container {
    margin: 0 auto;
    max-width: 1280px;
}
"""

# Gradio Blocks layout
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("""
            # 🎸 SoloSpeech: Enhancing Intelligibility and Quality in Target Speech Extraction through a Cascaded Generative Pipeline
            Extract the target voice from mixture speech given an enrollment speech.
            
            Learn more about **SoloSpeech** on the [SoloSpeech Repo](https://github.com/WangHelin1997/SoloSpeech/).
        """)

        with gr.Tab("Target Speech Extraction"):
            with gr.Row():
                mixture_input = gr.Audio(label="Upload Mixture Audio", type="filepath", value="test2.wav")
                enroll_input = gr.Audio(label="Upload Enrollment Audio", type="filepath", value="test2_enroll.wav")

            with gr.Row():
                demo_selector = gr.Dropdown(
                    label="Select Test Demo",
                    choices=[name for name, _, _ in demo_audio_files],
                    value="Test Demo 2"
                )
                extract_button = gr.Button("Extract", scale=1)

            with gr.Row():
                result = gr.Audio(label="Extracted Speech", type="numpy")

            # Update audio inputs when selecting from dropdown
            def update_audio_inputs(choice):
                for name, mixture_path, enroll_path in demo_audio_files:
                    if name == choice:
                        return mixture_path, enroll_path
                return None, None

            demo_selector.change(
                fn=update_audio_inputs,
                inputs=demo_selector,
                outputs=[mixture_input, enroll_input]
            )

            extract_button.click(
                fn=process_audio,
                inputs=[mixture_input, enroll_input],
                outputs=[result]
            )

    # Launch the Gradio demo
    demo.launch()