SoloSpeech / app.py
OpenSound's picture
Update app.py
d1d9ba1 verified
import gradio as gr
import spaces
import yaml
import random
import argparse
import os
import torch
import librosa
from tqdm import tqdm
from diffusers import DDIMScheduler
from solospeech.model.solospeech.conditioners import SoloSpeech_TSE
from solospeech.model.solospeech.conditioners import SoloSpeech_TSR
from solospeech.scripts.solospeech.utils import save_audio
import shutil
from solospeech.vae_modules.autoencoder_wrapper import Autoencoder
import pandas as pd
from speechbrain.pretrained.interfaces import Pretrained
from solospeech.corrector.fastgeco.model import ScoreModel
from solospeech.corrector.geco.util.other import pad_spec
from huggingface_hub import snapshot_download
import time
class Encoder(Pretrained):
MODULES_NEEDED = [
"compute_features",
"mean_var_norm",
"embedding_model"
]
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def encode_batch(self, wavs, wav_lens=None, normalize=False):
# Manage single waveforms in input
if len(wavs.shape) == 1:
wavs = wavs.unsqueeze(0)
# Assign full length if wav_lens is not assigned
if wav_lens is None:
wav_lens = torch.ones(wavs.shape[0], device=self.device)
# Storing waveform in the specified device
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
wavs = wavs.float()
# Computing features and embeddings
feats = self.mods.compute_features(wavs)
feats = self.mods.mean_var_norm(feats, wav_lens)
embeddings = self.mods.embedding_model(feats, wav_lens)
if normalize:
embeddings = self.hparams.mean_var_norm_emb(
embeddings,
torch.ones(embeddings.shape[0], device=self.device)
)
return embeddings
parser = argparse.ArgumentParser()
# pre-trained model path
parser.add_argument('--eta', type=int, default=0)
parser.add_argument("--num_infer_steps", type=int, default=200)
parser.add_argument('--sample-rate', type=int, default=16000)
# random seed
parser.add_argument('--random-seed', type=int, default=42, help="Fixed seed")
args = parser.parse_args()
print("Downloading model from Huggingface...")
local_dir = snapshot_download(
repo_id="OpenSound/SoloSpeech-models"
)
args.tse_config = os.path.join(local_dir, "config_extractor.yaml")
args.tsr_config = os.path.join(local_dir, "config_tsr.yaml")
args.vae_config = os.path.join(local_dir, "config_compressor.json")
args.autoencoder_path = os.path.join(local_dir, "compressor.ckpt")
args.tse_ckpt = os.path.join(local_dir, "extractor.pt")
args.tsr_ckpt = os.path.join(local_dir, "tsr.pt")
args.geco_ckpt = os.path.join(local_dir, "corrector.ckpt")
device = "cuda:0" if torch.cuda.is_available() else "cpu"
print(f"Device: {device}")
# load config
print("Loading models...")
with open(args.tse_config, 'r') as fp:
args.tse_config = yaml.safe_load(fp)
with open(args.tsr_config, 'r') as fp:
args.tsr_config = yaml.safe_load(fp)
args.v_prediction = args.tse_config["ddim"]["v_prediction"]
# load compressor
autoencoder = Autoencoder(args.autoencoder_path, args.vae_config, 'stft_vae', quantization_first=True)
autoencoder.eval()
autoencoder.to(device)
# load extractor
tse_model = SoloSpeech_TSE(
args.tse_config['diffwrap']['UDiT'],
args.tse_config['diffwrap']['ViT'],
).to(device)
tse_model.load_state_dict(torch.load(args.tse_ckpt)['model'])
tse_model.eval()
# load tsr model
tsr_model = SoloSpeech_TSR(
args.tsr_config['diffwrap']['UDiT']
).to(device)
tsr_model.load_state_dict(torch.load(args.tsr_ckpt)['model'])
tsr_model.eval()
# load corrector
geco_model = ScoreModel.load_from_checkpoint(
args.geco_ckpt,
batch_size=1, num_workers=0, kwargs=dict(gpu=False)
)
geco_model.eval(no_ema=False)
geco_model.cuda()
# load sid model
ecapatdnn_model = Encoder.from_hparams(source="yangwang825/ecapa-tdnn-vox2")
cosine_sim = torch.nn.CosineSimilarity(dim=-1)
# load diffusion tools
noise_scheduler = DDIMScheduler(**args.tse_config["ddim"]['diffusers'])
# these steps reset dtype of noise_scheduler params
latents = torch.randn((1, 128, 128),
device=device)
noise = torch.randn(latents.shape).to(device)
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps,
(noise.shape[0],),
device=latents.device).long()
_ = noise_scheduler.add_noise(latents, noise, timesteps)
@spaces.GPU
def sample_diffusion(tse_model, tsr_model, autoencoder, std, scheduler, device,
mixture=None, reference=None, lengths=None, reference_lengths=None,
ddim_steps=50, eta=0, seed=2025
):
with torch.no_grad():
generator = torch.Generator(device=device).manual_seed(seed)
scheduler.set_timesteps(ddim_steps)
tse_pred = torch.randn(mixture.shape, generator=generator, device=device)
tsr_pred = torch.randn(mixture.shape, generator=generator, device=device)
for t in scheduler.timesteps:
tse_pred = scheduler.scale_model_input(tse_pred, t)
model_output, _ = tse_model(
x=tse_pred,
timesteps=t,
mixture=mixture,
reference=reference,
x_len=lengths,
ref_len=reference_lengths
)
tse_pred = scheduler.step(model_output=model_output, timestep=t, sample=tse_pred,
eta=eta, generator=generator).prev_sample
for t in scheduler.timesteps:
tsr_pred = scheduler.scale_model_input(tsr_pred, t)
model_output, _ = tsr_model(
x=tsr_pred,
timesteps=t,
mixture=mixture,
reference=tse_pred,
x_len=lengths,
)
tsr_pred = scheduler.step(model_output=model_output, timestep=t, sample=tsr_pred,
eta=eta, generator=generator).prev_sample
tse_pred = autoencoder(embedding=tse_pred.transpose(2,1), std=std).squeeze(1)
tsr_pred = autoencoder(embedding=tsr_pred.transpose(2,1), std=std).squeeze(1)
return tse_pred, tsr_pred
@spaces.GPU
def tse(test_wav, enroll_wav):
print("Start Extraction...")
start_time = time.time()
mixture, _ = librosa.load(test_wav, sr=16000)
reference, _ = librosa.load(enroll_wav, sr=16000)
reference_wav = reference
reference = torch.tensor(reference).unsqueeze(0).to(device)
with torch.no_grad():
# compressor
reference, _ = autoencoder(audio=reference.unsqueeze(1))
reference_lengths = torch.LongTensor([reference.shape[-1]]).to(device)
mixture_input = torch.tensor(mixture).unsqueeze(0).to(device)
mixture_wav = mixture_input
mixture_input, std = autoencoder(audio=mixture_input.unsqueeze(1))
lengths = torch.LongTensor([mixture_input.shape[-1]]).to(device)
# extractor
tse_pred, tsr_pred = sample_diffusion(tse_model, tsr_model, autoencoder, std, noise_scheduler, device, mixture_input.transpose(2,1), reference.transpose(2,1), lengths, reference_lengths, ddim_steps=args.num_infer_steps, eta=args.eta, seed=args.random_seed)
ecapatdnn_embedding1 = ecapatdnn_model.encode_batch(tse_pred.squeeze()).squeeze()
ecapatdnn_embedding2 = ecapatdnn_model.encode_batch(tsr_pred.squeeze()).squeeze()
ecapatdnn_embedding3 = ecapatdnn_model.encode_batch(torch.tensor(reference_wav)).squeeze()
sim1 = cosine_sim(ecapatdnn_embedding1, ecapatdnn_embedding3).item()
sim2 = cosine_sim(ecapatdnn_embedding2, ecapatdnn_embedding3).item()
pred = tse_pred if sim1 > sim2 else tsr_pred
# corrector
min_leng = min(pred.shape[-1], mixture_wav.shape[-1])
x = pred[...,:min_leng]
m = mixture_wav[...,:min_leng]
norm_factor = m.abs().max()
x = x / norm_factor
m = m / norm_factor
X = torch.unsqueeze(geco_model._forward_transform(geco_model._stft(x.cuda())), 0)
X = pad_spec(X)
M = torch.unsqueeze(geco_model._forward_transform(geco_model._stft(m.cuda())), 0)
M = pad_spec(M)
timesteps = torch.linspace(0.5, 0.03, 1, device=M.device)
std = geco_model.sde._std(0.5*torch.ones((M.shape[0],), device=M.device))
z = torch.randn_like(M)
X_t = M + z * std[:, None, None, None]
for idx in range(len(timesteps)):
t = timesteps[idx]
if idx != len(timesteps) - 1:
dt = t - timesteps[idx+1]
else:
dt = timesteps[-1]
with torch.no_grad():
f, g = geco_model.sde.sde(X_t, t, M)
vec_t = torch.ones(M.shape[0], device=M.device) * t
mean_x_tm1 = X_t - (f - g**2*geco_model.forward(X_t, vec_t, M, X, vec_t[:,None,None,None]))*dt
if idx == len(timesteps) - 1:
X_t = mean_x_tm1
break
z = torch.randn_like(X)
X_t = mean_x_tm1 + z*g*torch.sqrt(dt)
sample = X_t
sample = sample.squeeze()
x_hat = geco_model.to_audio(sample.squeeze(), min_leng)
x_hat = x_hat * norm_factor / x_hat.abs().max()
x_hat = x_hat.detach().cpu().squeeze().numpy()
end_time = time.time()
audio_len = x_hat.shape[-1] / 16000
rtf = (end_time-start_time)/audio_len
print(f"RTF: {rtf:.4f}")
return (16000, x_hat)
@spaces.GPU
def process_audio(test_wav, enroll_wav):
result = tse(test_wav, enroll_wav)
return result
# List of demo audio files
demo_audio_files = [
("Test Demo 1", "test1.wav", "test1_enroll.wav"),
("Test Demo 2", "test2.wav", "test2_enroll.wav")
]
def update_audio_input(choice):
return choice
# CSS styling (optional)
css = """
#col-container {
margin: 0 auto;
max-width: 1280px;
}
"""
# Gradio Blocks layout
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
# 🎸 SoloSpeech: Enhancing Intelligibility and Quality in Target Speech Extraction through a Cascaded Generative Pipeline
Extract the target voice from mixture speech given an enrollment speech.
Learn more about **SoloSpeech** on the [SoloSpeech Repo](https://github.com/WangHelin1997/SoloSpeech/).
""")
with gr.Tab("Target Speech Extraction"):
with gr.Row():
mixture_input = gr.Audio(label="Upload Mixture Audio", type="filepath", value="test2.wav")
enroll_input = gr.Audio(label="Upload Enrollment Audio", type="filepath", value="test2_enroll.wav")
with gr.Row():
demo_selector = gr.Dropdown(
label="Select Test Demo",
choices=[name for name, _, _ in demo_audio_files],
value="Test Demo 2"
)
extract_button = gr.Button("Extract", scale=1)
with gr.Row():
result = gr.Audio(label="Extracted Speech", type="numpy")
# Update audio inputs when selecting from dropdown
def update_audio_inputs(choice):
for name, mixture_path, enroll_path in demo_audio_files:
if name == choice:
return mixture_path, enroll_path
return None, None
demo_selector.change(
fn=update_audio_inputs,
inputs=demo_selector,
outputs=[mixture_input, enroll_input]
)
extract_button.click(
fn=process_audio,
inputs=[mixture_input, enroll_input],
outputs=[result]
)
# Launch the Gradio demo
demo.launch()