PDFAISS-2.3 / app.py
Almaatla's picture
40 (10%) of token overlap in the tiktkon(izer)
5c6935b
import langchain
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.chains.question_answering import load_qa_chain
from langchain.document_loaders import UnstructuredPDFLoader,UnstructuredWordDocumentLoader
from langchain.indexes import VectorstoreIndexCreator
from langchain.vectorstores import FAISS
from langchain import HuggingFaceHub
from langchain import PromptTemplate
from langchain.chat_models import ChatOpenAI
from zipfile import ZipFile
import gradio as gr
import openpyxl
import os
import shutil
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
import tiktoken
import secrets
tokenizer = tiktoken.encoding_for_model("gpt-3.5-turbo")
# create the length function
def tiktoken_len(text):
tokens = tokenizer.encode(
text,
disallowed_special=()
)
return len(tokens)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=400,
chunk_overlap=40,
length_function=tiktoken_len,
separators=["\n\n", "\n", " ", ""]
)
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
foo = Document(page_content='foo is fou!',metadata={"source":'foo source'})
def reset_database(ui_session_id):
session_id = f"PDFAISS-{ui_session_id}"
if 'drive' in session_id:
print("RESET DATABASE: session_id contains 'drive' !!")
return None
try:
shutil.rmtree(session_id)
except:
print(f'no {session_id} directory present')
try:
os.remove(f"{session_id}.zip")
except:
print("no {session_id}.zip present")
return None
def is_duplicate(split_docs,db):
epsilon=0.0
print(f"DUPLICATE: Treating: {split_docs[0].metadata['source'].split('/')[-1]}")
for i in range(min(3,len(split_docs))):
query = split_docs[i].page_content
docs = db.similarity_search_with_score(query,k=1)
_ , score = docs[0]
epsilon += score
print(f"DUPLICATE: epsilon: {epsilon}")
return epsilon < 0.05
def merge_split_docs_to_db(split_docs,db,progress,progress_step=0.1):
progress(progress_step,desc="merging docs")
if len(split_docs)==0:
print("MERGE to db: NO docs!!")
return
filename = split_docs[0].metadata['source']
if is_duplicate(split_docs,db):
print(f"MERGE: Document is duplicated: {filename}")
return
print(f"MERGE: number of split docs: {len(split_docs)}")
batch = 20
for i in range(0, len(split_docs), batch):
progress(i/len(split_docs),desc=f"added {i} chunks of {len(split_docs)} chunks")
db1 = FAISS.from_documents(split_docs[i:i+batch], embeddings)
db.merge_from(db1)
return db
def merge_pdf_to_db(filename,db,progress,progress_step=0.1):
progress_step+=0.05
progress(progress_step,'unpacking pdf')
doc = UnstructuredPDFLoader(filename).load()
doc[0].metadata['source'] = filename.split('/')[-1]
split_docs = text_splitter.split_documents(doc)
progress_step+=0.3
progress(progress_step,'docx unpacked')
return merge_split_docs_to_db(split_docs,db,progress,progress_step)
def merge_docx_to_db(filename,db,progress,progress_step=0.1):
progress_step+=0.05
progress(progress_step,'unpacking docx')
doc = UnstructuredWordDocumentLoader(filename).load()
doc[0].metadata['source'] = filename.split('/')[-1]
split_docs = text_splitter.split_documents(doc)
progress_step+=0.3
progress(progress_step,'docx unpacked')
return merge_split_docs_to_db(split_docs,db,progress,progress_step)
def merge_txt_to_db(filename,db,progress,progress_step=0.1):
progress_step+=0.05
progress(progress_step,'unpacking txt')
with open(filename) as f:
docs = text_splitter.split_text(f.read())
split_docs = [Document(page_content=doc,metadata={'source':filename.split('/')[-1]}) for doc in docs]
progress_step+=0.3
progress(progress_step,'txt unpacked')
return merge_split_docs_to_db(split_docs,db,progress,progress_step)
def unpack_zip_file(filename,db,progress):
with ZipFile(filename, 'r') as zipObj:
contents = zipObj.namelist()
print(f"unpack zip: contents: {contents}")
tmp_directory = filename.split('/')[-1].split('.')[-2]
shutil.unpack_archive(filename, tmp_directory)
if 'index.faiss' in [item.lower() for item in contents]:
db2 = FAISS.load_local(tmp_directory, embeddings)
db.merge_from(db2)
return db
for file in contents:
if file.lower().endswith('.docx'):
db = merge_docx_to_db(f"{tmp_directory}/{file}",db,progress)
if file.lower().endswith('.pdf'):
db = merge_pdf_to_db(f"{tmp_directory}/{file}",db,progress)
if file.lower().endswith('.txt'):
db = merge_txt_to_db(f"{tmp_directory}/{file}",db,progress)
return db
def add_files_to_zip(session_id):
zip_file_name = f"{session_id}.zip"
with ZipFile(zip_file_name, "w") as zipObj:
for root, dirs, files in os.walk(session_id):
for file_name in files:
file_path = os.path.join(root, file_name)
arcname = os.path.relpath(file_path, session_id)
zipObj.write(file_path, arcname)
#### UI Functions ####
def embed_files(files,ui_session_id,progress=gr.Progress(),progress_step=0.05):
progress(progress_step,desc="Starting...")
split_docs=[]
if len(ui_session_id)==0:
ui_session_id = secrets.token_urlsafe(16)
session_id = f"PDFAISS-{ui_session_id}"
try:
db = FAISS.load_local(session_id,embeddings)
except:
print(f"SESSION: {session_id} database does not exist, create a FAISS db")
db = FAISS.from_documents([foo], embeddings)
db.save_local(session_id)
print(f"SESSION: {session_id} database created")
print("EMBEDDED, before embeddeding: ",session_id,len(db.index_to_docstore_id))
for file_id,file in enumerate(files):
file_type = file.name.split('.')[-1].lower()
source = file.name.split('/')[-1]
print(f"current file: {source}")
progress(file_id/len(files),desc=f"Treating {source}")
if file_type == 'pdf':
db = merge_pdf_to_db(file.name,db,progress)
db.save_local(session_id)
if file_type == 'txt':
db = merge_txt_to_db(file.name,db,progress)
db.save_local(session_id)
if file_type == 'docx':
db = merge_docx_to_db(file.name,db,progress)
db.save_local(session_id)
if file_type == 'zip':
db = unpack_zip_file(file.name,db,progress)
db.save_local(session_id)
### move file to store ###
progress(progress_step, desc = 'moving file to store')
directory_path = f"{session_id}/store/"
if not os.path.exists(directory_path):
os.makedirs(directory_path)
shutil.move(file.name, directory_path)
### load the updated db and zip it ###
progress(progress_step, desc = 'loading db')
db = FAISS.load_local(session_id,embeddings)
print("EMBEDDED, after embeddeding: ",session_id,len(db.index_to_docstore_id))
progress(progress_step, desc = 'zipping db for download')
add_files_to_zip(session_id)
print(f"EMBEDDED: db zipped")
progress(progress_step, desc = 'db zipped')
return f"{session_id}.zip",ui_session_id
def display_docs(docs):
output_str = ''
for i, doc in enumerate(docs):
source = doc.metadata['source'].split('/')[-1]
output_str += f"Ref: {i+1}\n{repr(doc.page_content)}\nSource: {source}\n\n"
return output_str
def ask_gpt(query, apikey,history,ui_session_id):
session_id = f"PDFAISS-{ui_session_id}"
try:
db = FAISS.load_local(session_id,embeddings)
print("ASKGPT after loading",session_id,len(db.index_to_docstore_id))
except:
print(f"SESSION: {session_id} database does not exist")
return f"SESSION: {session_id} database does not exist","",""
docs = db.similarity_search(query)
history += f"[query]\n{query}\n[answer]\n"
if(apikey==""):
history += f"None\n[references]\n{display_docs(docs)}\n\n"
return "No answer from GPT", display_docs(docs),history
else:
llm = ChatOpenAI(temperature=0, model_name = 'gpt-3.5-turbo', openai_api_key=apikey)
chain = load_qa_chain(llm, chain_type="stuff")
answer = chain.run(input_documents=docs, question=query, verbose=True)
history += f"{answer}\n[references]\n{display_docs(docs)}\n\n"
return answer,display_docs(docs),history
with gr.Blocks() as demo:
gr.Markdown("Upload your documents and question them.")
with gr.Tab("Upload PDF & TXT"):
tb_session_id = gr.Textbox(label='session id')
docs_input = gr.File(file_count="multiple", file_types=[".txt", ".pdf",".zip",".docx"])
db_output = gr.outputs.File(label="Download zipped database")
btn_generate_db = gr.Button("Generate database")
btn_reset_db = gr.Button("Reset database")
with gr.Tab("Ask PDF"):
with gr.Column():
api_key = gr.Textbox(placeholder="Leave blank if you don't have any", label="OpenAI API Key",type='password')
query_input = gr.Textbox(placeholder="Type your question", label="Question")
btn_askGPT = gr.Button("Answer")
answer_output = gr.Textbox(label='GPT 3.5 answer')
answer_output.style(show_copy_button=True)
sources = gr.Textbox(label='Sources')
sources.style(show_copy_button=True)
history = gr.Textbox(label='History')
history.style(show_copy_button=True)
btn_generate_db.click(embed_files, inputs=[docs_input,tb_session_id], outputs=[db_output,tb_session_id])
btn_reset_db.click(reset_database,inputs=[tb_session_id],outputs=[db_output])
btn_askGPT.click(ask_gpt, inputs=[query_input,api_key,history,tb_session_id], outputs=[answer_output,sources,history])
demo.queue(concurrency_count=10)
demo.launch(debug=False,share=False)