File size: 15,909 Bytes
5ef0f8d
5f1cdfa
 
a83bff5
035141c
5ef0f8d
 
 
 
 
8ac47d4
5ef0f8d
 
 
 
 
5f1cdfa
5ef0f8d
 
 
a83bff5
5ef0f8d
 
 
8ac47d4
035141c
 
f6bffda
5ef0f8d
 
 
 
 
 
 
d2dc29e
5ef0f8d
 
5f1cdfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ef0f8d
 
 
 
5f1cdfa
5ef0f8d
 
 
 
5f1cdfa
5ef0f8d
 
 
 
 
 
 
 
5f1cdfa
 
 
5ef0f8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f1cdfa
5ef0f8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f1cdfa
5ef0f8d
 
5f1cdfa
5ef0f8d
 
 
5f1cdfa
5ef0f8d
 
5f1cdfa
 
5ef0f8d
5f1cdfa
5ef0f8d
5f1cdfa
 
5ef0f8d
 
 
 
 
 
 
8ac47d4
 
5ef0f8d
 
 
 
8ac47d4
5ef0f8d
 
 
 
8ac47d4
 
5ef0f8d
 
 
 
 
8ac47d4
 
5ef0f8d
 
 
 
 
 
 
 
 
8ac47d4
5ef0f8d
 
 
 
 
 
 
 
 
 
 
 
8ac47d4
 
 
 
 
 
5ef0f8d
 
 
 
 
 
8ac47d4
5ef0f8d
 
 
 
 
 
 
 
 
8ac47d4
5ef0f8d
 
 
 
 
 
 
 
 
 
 
8ac47d4
5ef0f8d
 
 
 
 
 
 
 
 
 
8ac47d4
5ef0f8d
 
a83bff5
8ac47d4
a83bff5
 
 
 
 
 
 
 
5ef0f8d
a83bff5
 
 
5ef0f8d
a83bff5
 
 
 
 
 
5f1cdfa
 
 
a83bff5
5f1cdfa
a83bff5
 
 
 
 
 
 
 
 
 
 
 
 
5ef0f8d
 
 
a83bff5
 
 
5ef0f8d
 
a83bff5
5ef0f8d
 
a83bff5
 
5ef0f8d
 
 
 
 
 
 
 
 
 
 
 
 
 
8ac47d4
 
5ef0f8d
 
 
 
d2dc29e
 
5ef0f8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f1cdfa
 
 
5ef0f8d
 
 
 
 
 
 
 
 
8ac47d4
5ef0f8d
8ac47d4
5ef0f8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ac47d4
5ef0f8d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
import asyncio
from pathlib import Path
import traceback
from typing import Dict, List, Literal, Tuple
from fastapi.routing import APIRouter
import logging
import io
import zipfile
import json
import os
from httpx import AsyncClient
from pydantic import BaseModel
import requests
import subprocess
import pandas as pd
import re
import tempfile
from lxml import etree
from bs4 import BeautifulSoup
from fastapi import Depends, BackgroundTasks, HTTPException, Request
from dependencies import DOC_FINDER_BASE_URL, get_http_client, get_llm_router
from fastapi.responses import StreamingResponse
from litellm.router import Router

from schemas import DataRequest, DataResponse, DocRequirements, DocDownloadRequest, MeetingsRequest, MeetingsResponse, ExtractRequirementsRequest, ExtractRequirementsResponse

# API router for requirement extraction from docs / doc list retrieval / download
router = APIRouter(tags=["document extraction"])

# ==================================================== Utilities =================================================================
NSMAP = {
    'w': 'http://schemas.openxmlformats.org/wordprocessingml/2006/main',
    'v': 'urn:schemas-microsoft-com:vml'
}

# ================================== Converting of files to .txt ====================================


def convert_file(contents: io.BytesIO, filename: str, input_ext: str, output_ext: str, filter: str = None) -> io.BytesIO:
    """
    Converts the given file bytes using Libreoffice headless to the specified file type.

    Args:
        contents: File contents
        filename: File base name WITHOUT THE EXTENSION
        input_ext: Input extension (WITHOUT THE DOT)
        output_ext: Output extension (WITHOUT THE DOT)
        filter: The conversion filter to use.
    """
    with tempfile.TemporaryDirectory() as tmpdir:
        dir_path = Path(tmpdir)
        input_file_path = dir_path / f"{filename}.{input_ext}"
        output_file_path = dir_path / f"{filename}.{output_ext}"

        # write the memory contents to the input file
        with open(input_file_path, "wb") as in_file:
            in_file.write(contents.read())

        out_bytes = io.BytesIO()

        # convert using libreoffice
        subprocess.run([
            "libreoffice",
            "--headless",
            "--convert-to", f"{output_ext}:{filter}" if filter else output_ext,
            "--outdir", tmpdir,
            input_file_path
        ], check=True)

        with open(output_file_path, mode="rb") as out:
            out_bytes.write(out.read())

        out_bytes.seek(0)
        return out_bytes


def get_docx_archive(url: str) -> zipfile.ZipFile:
    """Récupère le docx depuis l'URL et le retourne comme objet ZipFile"""
    if not url.endswith("zip"):
        raise ValueError("URL doit pointer vers un fichier ZIP")

    doc_id = os.path.splitext(os.path.basename(url))[0]
    resp = requests.get(url, verify=False, headers={
        "User-Agent": 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
    })

    resp.raise_for_status()

    with zipfile.ZipFile(io.BytesIO(resp.content)) as zf:
        for file_name in zf.namelist():
            if file_name.endswith(".docx"):
                docx_bytes = zf.read(file_name)
                return zipfile.ZipFile(io.BytesIO(docx_bytes))
            elif file_name.endswith(".doc"):
                in_bytes = io.BytesIO(zf.read(file_name))
                docx_bytes = convert_file(in_bytes, doc_id, "doc", "docx")
                return zipfile.ZipFile(docx_bytes)

    raise ValueError("Aucun fichier docx/doc trouvé dans l'archive")


def parse_document_xml(docx_zip: zipfile.ZipFile) -> etree._ElementTree:
    """Parse le document.xml principal"""
    xml_bytes = docx_zip.read('word/document.xml')
    parser = etree.XMLParser(remove_blank_text=True)
    return etree.fromstring(xml_bytes, parser=parser)


def clean_document_xml(root: etree._Element) -> None:
    """Nettoie le XML en modifiant l'arbre directement"""
    # Suppression des balises <w:del> et leur contenu
    for del_elem in root.xpath('//w:del', namespaces=NSMAP):
        parent = del_elem.getparent()
        if parent is not None:
            parent.remove(del_elem)

    # Désencapsulation des balises <w:ins>
    for ins_elem in root.xpath('//w:ins', namespaces=NSMAP):
        parent = ins_elem.getparent()
        index = parent.index(ins_elem)
        for child in ins_elem.iterchildren():
            parent.insert(index, child)
            index += 1
        parent.remove(ins_elem)

    # Nettoyage des commentaires
    for tag in ['w:commentRangeStart', 'w:commentRangeEnd', 'w:commentReference']:
        for elem in root.xpath(f'//{tag}', namespaces=NSMAP):
            parent = elem.getparent()
            if parent is not None:
                parent.remove(elem)


def create_modified_docx(original_zip: zipfile.ZipFile, modified_root: etree._Element) -> io.BytesIO:
    """Crée un nouveau docx avec le XML modifié"""
    output = io.BytesIO()

    with zipfile.ZipFile(output, 'w', compression=zipfile.ZIP_DEFLATED) as new_zip:
        # Copier tous les fichiers non modifiés
        for file in original_zip.infolist():
            if file.filename != 'word/document.xml':
                new_zip.writestr(file, original_zip.read(file.filename))

        # Ajouter le document.xml modifié
        xml_str = etree.tostring(
            modified_root,
            xml_declaration=True,
            encoding='UTF-8',
            pretty_print=True
        )
        new_zip.writestr('word/document.xml', xml_str)

    output.seek(0)
    return output


def docx_to_txt(doc_id: str, url: str) -> str:
    docx_zip = get_docx_archive(url)
    root = parse_document_xml(docx_zip)
    clean_document_xml(root)

    modified_bytes = create_modified_docx(docx_zip, root)

    final_bytes = convert_file(
        modified_bytes, f"{doc_id}", "docx", "txt")

    final_bytes_text = str(final_bytes.read(), encoding="utf-8")

    txt_data = [line.strip()
                for line in final_bytes_text.splitlines() if line.strip()]

    return txt_data


# ============================================= Doc routes =========================================================

@router.post("/get_meetings", response_model=MeetingsResponse)
async def get_meetings(req: MeetingsRequest, http_client: AsyncClient = Depends(get_http_client)):
    # Extracting WG
    working_group = req.working_group
    tsg = re.sub(r"\d+", "", working_group)
    wg_number = re.search(r"\d", working_group).group(0)

    # building corresponding FTP url
    logging.debug(tsg, wg_number)
    url = "https://www.3gpp.org/ftp/tsg_" + tsg
    logging.debug(url)

    ftp_request = await http_client.get(url)
    soup = BeautifulSoup(ftp_request.text, "html.parser")

    meeting_folders = []
    all_meetings = []
    wg_folders = [item.get_text() for item in soup.select("tr td a")]
    selected_folder = None

    # sanity check to ensure the requested workgroup is present in the ftp directories
    for folder in wg_folders:
        if "wg" + str(wg_number) in folder.lower():
            selected_folder = folder
            break

    url += "/" + selected_folder
    logging.debug(url)

    if selected_folder:
        resp = await http_client.get(url)
        soup = BeautifulSoup(resp.text, "html.parser")
        meeting_folders = [item.get_text() for item in soup.select("tr td a") if item.get_text(
        ).startswith("TSG") or (item.get_text().startswith("CT") and "-" in item.get_text())]
        all_meetings = [working_group + "#" + meeting.split("_", 1)[1].replace("_", " ").replace(
            "-", " ") if meeting.startswith('TSG') else meeting.replace("-", "#") for meeting in meeting_folders]

    return MeetingsResponse(meetings=dict(zip(all_meetings, meeting_folders)))

# ============================================================================================================================================


@router.post("/get_dataframe", response_model=DataResponse)
async def get_docs_df(req: DataRequest, http_client: AsyncClient = Depends(get_http_client)):
    """
    Downloads the document list dataframe for a given meeting 
    """

    # Extracting WG
    working_group = req.working_group
    tsg = re.sub(r"\d+", "", working_group)
    wg_number = re.search(r"\d", working_group).group(0)
    url = "https://www.3gpp.org/ftp/tsg_" + tsg
    logging.info("Fetching TDocs dataframe")

    resp = await http_client.get(url)
    soup = BeautifulSoup(resp.text, "html.parser")
    wg_folders = [item.get_text() for item in soup.select("tr td a")]
    selected_folder = None
    for folder in wg_folders:
        if "wg" + str(wg_number) in folder.lower():
            selected_folder = folder
            break

    url += "/" + selected_folder + "/" + req.meeting + "/docs"
    resp = await http_client.get(url)
    soup = BeautifulSoup(resp.text, "html.parser")
    files = [item.get_text() for item in soup.select("tr td a")
             if item.get_text().endswith(".xlsx")]

    if files == []:
        raise HTTPException(status_code=404, detail="No XLSX has been found")

    def gen_url(tdoc: str):
        return f"{url}/{tdoc}.zip"

    df = pd.read_excel(str(url + "/" + files[0]).replace("#", "%23"))
    filtered_df = df[~(
        df["Uploaded"].isna())][["TDoc", "Title", "CR category", "Source", "Type", "Agenda item", "Agenda item description", "TDoc Status"]]
    filtered_df["URL"] = filtered_df["TDoc"].apply(gen_url)

    df = filtered_df.fillna("")
    return DataResponse(data=df[["TDoc", "Title", "Type", "TDoc Status", "Agenda item description", "URL"]].to_dict(orient="records"))

# ==================================================================================================================================


@router.post("/download_tdocs")
def download_tdocs(req: DocDownloadRequest):
    """Download the specified TDocs and zips them in a single archive"""

    # Document IDs to download
    document_ids = [doc.document for doc in req.documents]

    logging.info(f"Downloading TDocs: {document_ids}")

    documents_content: Dict[str, bytes] = {}
    failed_documents: List[str] = []

    def _process_single_document(doc_id: str, doc_url: str) -> Tuple[bool, bytes]:
        """Attempts to convert a document to text and returns success status and content."""
        try:
            text_lines = docx_to_txt(doc_id, doc_url)
            content_bytes = "\n".join(text_lines).encode("utf-8")
            return True, content_bytes
        except Exception as e:
            logging.warning(
                f"Failed to process document '{doc_id}' from URL '{doc_url}': {e}")
            error_message = f"Document '{doc_id}' text extraction failed: {e}".encode(
                "utf-8")
            return False, error_message

    for doc in req.documents:
        success, content = _process_single_document(doc.document, doc.url)
        documents_content[doc.document] = content
        if not success:
            failed_documents.append(doc.doc_id)

    # sanity check to ensure all requested documents are accounted for, adding error messages for any missing ones
    for requested_doc_id in document_ids:
        if requested_doc_id not in documents_content:
            error_msg = (
                f"Failed to retrieve or process document '{requested_doc_id}'. "
            ).encode("utf-8")

            documents_content[requested_doc_id] = error_msg
            logging.warning(
                f"Document '{requested_doc_id}' was requested but not found or processed.")
            if requested_doc_id not in failed_documents:
                failed_documents.append(requested_doc_id)

    zip_buffer = io.BytesIO()
    with zipfile.ZipFile(zip_buffer, mode='w', compression=zipfile.ZIP_DEFLATED) as zip_file:
        for doc_id, content_bytes in documents_content.items():
            safe_filename = f"{doc_id}.txt"
            zip_file.writestr(safe_filename, content_bytes)

    zip_buffer.seek(0)

    return StreamingResponse(
        zip_buffer,
        media_type="application/zip",
        headers={"Content-Disposition": "attachment; filename=tdocs.zip"}
    )

# ======================================================================================================================================================================================


class ProgressUpdate(BaseModel):
    """Defines the structure of a single SSE message."""
    status: Literal["progress", "complete"]
    data: dict
    total_docs: int
    processed_docs: int


@router.post("/generate_requirements/sse")
async def gen_reqs(req: ExtractRequirementsRequest, llm_router: Router = Depends(get_llm_router)):
    """Extract requirements from the specified xxxxCR docs using a LLM and returns SSE events about the progress of ongoing operations"""

    documents = req.documents
    n_docs = len(documents)

    logging.info(
        "Generating requirements for documents: {}".format(req.documents))

    # limit max concurrency of LLM requests to prevent a huge pile of errors because of small rate limits
    concurrency_sema = asyncio.Semaphore(4)

    def prompt(doc_id, full):
        return f"Here's the document whose ID is {doc_id} : {full}\n\nExtract all requirements and group them by context, returning a list of objects where each object includes a document ID, a concise description of the context where the requirements apply (not a chapter title or copied text), and a list of associated requirements; always return the result as a list, even if only one context is found. Remove the errors"

    async def _process_document(doc) -> list[DocRequirements]:
        doc_id = doc.document
        url = doc.url

        # convert the docx to txt for use
        try:
            full = "\n".join(docx_to_txt(doc_id, url))
        except Exception as e:
            fmt = "".join(traceback.format_exception(e))
            logging.error(f"Failed to process doc {doc_id} : {fmt}")
            return [DocRequirements(document=doc_id, context="Failed to process document", requirements=[])]

        try:
            await concurrency_sema.acquire()

            model_used = "gemini-v2"
            resp_ai = await llm_router.acompletion(
                model=model_used,
                messages=[
                    {"role": "user", "content": prompt(doc_id, full)}],
                response_format=ExtractRequirementsResponse
            )
            return ExtractRequirementsResponse.model_validate_json(resp_ai.choices[0].message.content).requirements
        except Exception as e:
            return [DocRequirements(document=doc_id, context="Error LLM", requirements=[])]
        finally:
            concurrency_sema.release()

    # futures for all processed documents
    process_futures = [_process_document(doc) for doc in documents]

    # lambda to print progress
    def progress_update(x): return f"data: {x.model_dump_json()}\n\n"

    # async generator that generates  the SSE events for progress
    async def _stream_generator(docs: list[asyncio.Future]):
        items = []
        n_processed = 0

        yield progress_update(ProgressUpdate(status="progress", data={}, total_docs=n_docs, processed_docs=0))

        for doc in asyncio.as_completed(docs):
            result = await doc
            items.extend(result)
            n_processed += 1
            yield progress_update(ProgressUpdate(status="progress", data={}, total_docs=n_docs, processed_docs=n_processed))

            final_response = ExtractRequirementsResponse(requirements=items)

        yield progress_update(ProgressUpdate(status="complete", data=final_response.model_dump(), total_docs=n_docs, processed_docs=n_processed))

    return StreamingResponse(_stream_generator(process_futures), media_type="text/event-stream")