File size: 17,407 Bytes
5ef0f8d
 
035141c
5ef0f8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
035141c
 
f6bffda
5ef0f8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
import asyncio
from typing import Literal
from fastapi.routing import APIRouter
import logging
import string
import io
import traceback
import zipfile
import json
import os
from pydantic import BaseModel
import requests
import subprocess
import pandas as pd
import re
from lxml import etree
from nltk.tokenize import word_tokenize
from bs4 import BeautifulSoup
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from fastapi import Depends, BackgroundTasks, HTTPException, Request
from dependencies import get_llm_router
from fastapi.responses import StreamingResponse
from litellm.router import Router

from schemas import DataRequest, DataResponse, DocRequirements, DownloadRequest, MeetingsRequest, MeetingsResponse, RequirementsRequest, RequirementsResponse

# API router for requirement extraction from docs / doc list retrieval / download
router = APIRouter(tags=["document extraction"])

# ==================================================== Utilities =================================================================

lemmatizer = WordNetLemmatizer()

NSMAP = {
    'w': 'http://schemas.openxmlformats.org/wordprocessingml/2006/main',
    'v': 'urn:schemas-microsoft-com:vml'
}


def lemma(text: str):
    stop_words = set(stopwords.words('english'))
    txt = text.translate(str.maketrans('', '', string.punctuation)).strip()
    tokens = [token for token in word_tokenize(
        txt.lower()) if token not in stop_words]
    return [lemmatizer.lemmatize(token) for token in tokens]


def get_docx_archive(url: str) -> zipfile.ZipFile:
    """Récupère le docx depuis l'URL et le retourne comme objet ZipFile"""
    if not url.endswith("zip"):
        raise ValueError("URL doit pointer vers un fichier ZIP")
    doc_id = os.path.splitext(os.path.basename(url))[0]
    resp = requests.get(url, verify=False, headers={
        "User-Agent": 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
    })
    resp.raise_for_status()

    with zipfile.ZipFile(io.BytesIO(resp.content)) as zf:
        for file_name in zf.namelist():
            if file_name.endswith(".docx"):
                docx_bytes = zf.read(file_name)
                return zipfile.ZipFile(io.BytesIO(docx_bytes))
            elif file_name.endswith(".doc"):
                input_path = f"/tmp/{doc_id}.doc"
                output_path = f"/tmp/{doc_id}.docx"
                docx_bytes = zf.read(file_name)

                with open(input_path, "wb") as f:
                    f.write(docx_bytes)

                subprocess.run([
                    "libreoffice",
                    "--headless",
                    "--convert-to", "docx",
                    "--outdir", "/tmp",
                    input_path
                ], check=True)

                with open(output_path, "rb") as f:
                    docx_bytes = f.read()

                os.remove(input_path)
                os.remove(output_path)

                return zipfile.ZipFile(io.BytesIO(docx_bytes))

    raise ValueError("Aucun fichier docx/doc trouvé dans l'archive")


def parse_document_xml(docx_zip: zipfile.ZipFile) -> etree._ElementTree:
    """Parse le document.xml principal"""
    xml_bytes = docx_zip.read('word/document.xml')
    parser = etree.XMLParser(remove_blank_text=True)
    return etree.fromstring(xml_bytes, parser=parser)


def clean_document_xml(root: etree._Element) -> None:
    """Nettoie le XML en modifiant l'arbre directement"""
    # Suppression des balises <w:del> et leur contenu
    for del_elem in root.xpath('//w:del', namespaces=NSMAP):
        parent = del_elem.getparent()
        if parent is not None:
            parent.remove(del_elem)

    # Désencapsulation des balises <w:ins>
    for ins_elem in root.xpath('//w:ins', namespaces=NSMAP):
        parent = ins_elem.getparent()
        index = parent.index(ins_elem)
        for child in ins_elem.iterchildren():
            parent.insert(index, child)
            index += 1
        parent.remove(ins_elem)

    # Nettoyage des commentaires
    for tag in ['w:commentRangeStart', 'w:commentRangeEnd', 'w:commentReference']:
        for elem in root.xpath(f'//{tag}', namespaces=NSMAP):
            parent = elem.getparent()
            if parent is not None:
                parent.remove(elem)


def create_modified_docx(original_zip: zipfile.ZipFile, modified_root: etree._Element) -> bytes:
    """Crée un nouveau docx avec le XML modifié"""
    output = io.BytesIO()

    with zipfile.ZipFile(output, 'w', compression=zipfile.ZIP_DEFLATED) as new_zip:
        # Copier tous les fichiers non modifiés
        for file in original_zip.infolist():
            if file.filename != 'word/document.xml':
                new_zip.writestr(file, original_zip.read(file.filename))

        # Ajouter le document.xml modifié
        xml_str = etree.tostring(
            modified_root,
            xml_declaration=True,
            encoding='UTF-8',
            pretty_print=True
        )
        new_zip.writestr('word/document.xml', xml_str)

    output.seek(0)
    return output.getvalue()


def docx_to_txt(doc_id: str, url: str):
    docx_zip = get_docx_archive(url)
    root = parse_document_xml(docx_zip)
    clean_document_xml(root)
    modified_bytes = create_modified_docx(docx_zip, root)

    input_path = f"/tmp/{doc_id}_cleaned.docx"
    output_path = f"/tmp/{doc_id}_cleaned.txt"
    with open(input_path, "wb") as f:
        f.write(modified_bytes)

    subprocess.run([
        "libreoffice",
        "--headless",
        "--convert-to", "txt",
        "--outdir", "/tmp",
        input_path
    ], check=True)

    with open(output_path, "r", encoding="utf-8") as f:
        txt_data = [line.strip() for line in f if line.strip()]

    os.remove(input_path)
    os.remove(output_path)
    return txt_data


# ============================================= Doc routes =========================================================

@router.post("/get_meetings", response_model=MeetingsResponse)
def get_meetings(req: MeetingsRequest):
    working_group = req.working_group
    tsg = re.sub(r"\d+", "", working_group)
    wg_number = re.search(r"\d", working_group).group(0)

    logging.debug(tsg, wg_number)
    url = "https://www.3gpp.org/ftp/tsg_" + tsg
    logging.debug(url)

    resp = requests.get(url, verify=False)
    soup = BeautifulSoup(resp.text, "html.parser")

    meeting_folders = []
    all_meetings = []
    wg_folders = [item.get_text() for item in soup.select("tr td a")]
    selected_folder = None
    for folder in wg_folders:
        if "wg" + str(wg_number) in folder.lower():
            selected_folder = folder
            break

    url += "/" + selected_folder
    logging.debug(url)

    if selected_folder:
        resp = requests.get(url, verify=False)
        soup = BeautifulSoup(resp.text, "html.parser")
        meeting_folders = [item.get_text() for item in soup.select("tr td a") if item.get_text(
        ).startswith("TSG") or (item.get_text().startswith("CT") and "-" in item.get_text())]
        all_meetings = [working_group + "#" + meeting.split("_", 1)[1].replace("_", " ").replace(
            "-", " ") if meeting.startswith('TSG') else meeting.replace("-", "#") for meeting in meeting_folders]

    return MeetingsResponse(meetings=dict(zip(all_meetings, meeting_folders)))

# ============================================================================================================================================


@router.post("/get_dataframe", response_model=DataResponse)
def get_change_request_dataframe(req: DataRequest):
    working_group = req.working_group
    tsg = re.sub(r"\d+", "", working_group)
    wg_number = re.search(r"\d", working_group).group(0)
    url = "https://www.3gpp.org/ftp/tsg_" + tsg
    logging.info("Fetching TDocs dataframe")

    resp = requests.get(url, verify=False)
    soup = BeautifulSoup(resp.text, "html.parser")
    wg_folders = [item.get_text() for item in soup.select("tr td a")]
    selected_folder = None
    for folder in wg_folders:
        if "wg" + str(wg_number) in folder.lower():
            selected_folder = folder
            break

    url += "/" + selected_folder + "/" + req.meeting + "/docs"
    resp = requests.get(url, verify=False)
    soup = BeautifulSoup(resp.text, "html.parser")
    files = [item.get_text() for item in soup.select("tr td a")
             if item.get_text().endswith(".xlsx")]

    if files == []:
        raise HTTPException(status_code=404, detail="No XLSX has been found")

    def gen_url(tdoc: str):
        return f"{url}/{tdoc}.zip"

    df = pd.read_excel(str(url + "/" + files[0]).replace("#", "%23"))
    filtered_df = df[(((df["Type"] == "CR") & ((df["CR category"] == "B") | (df["CR category"] == "C"))) | (df["Type"] == "pCR")) & ~(
        df["Uploaded"].isna())][["TDoc", "Title", "CR category", "Source", "Type", "Agenda item", "Agenda item description", "TDoc Status"]]
    filtered_df["URL"] = filtered_df["TDoc"].apply(gen_url)

    df = filtered_df.fillna("")
    return DataResponse(data=df[["TDoc", "Title", "Type", "TDoc Status", "Agenda item description", "URL"]].to_dict(orient="records"))

# ==================================================================================================================================


@router.post("/download_tdocs")
def download_tdocs(req: DownloadRequest):
    """Download the specified TDocs and zips them in a single archive"""
    documents = req.documents

    logging.info(f"Downloading TDocs: {documents}")

    def process_document(doc: str):
        doc_id = doc
        url = requests.post(
            'https://organizedprogrammers-3gppdocfinder.hf.space/find',
            headers={"Content-Type": "application/json"},
            data=json.dumps({"doc_id": doc_id}),
            verify=False
        )
        logging.info(
            f"Retrieving URL for doc {doc_id} returned http status {url.status_code}")
        url = url.json()['url']
        logging.debug(f"Doc URL for {doc_id} is {url}")

        try:
            txt = "\n".join(docx_to_txt(doc_id, url))
        except Exception as e:
            txt = f"Document {doc_id} text extraction failed: {e}"
        return doc_id, txt.encode("utf-8")

    # PERF: use asyncio?
    def process_batch(batch):
        results = {}
        for doc in batch:
            try:
                doc_id, file_bytes = process_document(doc)
                results[doc_id] = file_bytes
            except Exception as e:
                traceback.print_exception(e)
                results[doc] = b"Erreur"
        return results

    documents_bytes = process_batch(documents)

    zip_buffer = io.BytesIO()
    with zipfile.ZipFile(zip_buffer, mode='w', compression=zipfile.ZIP_DEFLATED) as zip_file:
        for doc_id, txt_data in documents_bytes.items():
            zip_file.writestr(f'{doc_id}.txt', txt_data)

    zip_buffer.seek(0)
    return StreamingResponse(
        zip_buffer,
        media_type="application/zip"
    )


@router.post("/generate_requirements", response_model=RequirementsResponse)
async def gen_reqs(req: RequirementsRequest, background_tasks: BackgroundTasks, llm_router: Router = Depends(get_llm_router)):
    """Extract requirements from the specified TDocs using a LLM"""

    documents = req.documents
    n_docs = len(documents)

    logging.info("Generating requirements for documents: {}".format(
        [doc.document for doc in documents]))

    def prompt(doc_id, full):
        return f"Here's the document whose ID is {doc_id} : {full}\n\nExtract all requirements and group them by context, returning a list of objects where each object includes a document ID, a concise description of the context where the requirements apply (not a chapter title or copied text), and a list of associated requirements; always return the result as a list, even if only one context is found. Remove the errors"

    async def process_document(doc):
        doc_id = doc.document
        url = doc.url
        try:
            full = "\n".join(docx_to_txt(doc_id, url))
        except Exception as e:
            logging.error(f"Failed to process doc {doc_id}", e)
            return RequirementsResponse(requirements=[DocRequirements(document=doc_id, context="Error LLM", requirements=[])]).requirements

        try:
            resp_ai = await llm_router.acompletion(
                model="gemini-v2",
                messages=[
                    {"role": "user", "content": prompt(doc_id, full)}],
                response_format=RequirementsResponse
            )

            return RequirementsResponse.model_validate_json(resp_ai.choices[0].message.content).requirements

        except Exception as e:
            logging.error(
                f"Failed to process document {doc_id}", e, stack_info=True)
            return RequirementsResponse(requirements=[DocRequirements(document=doc_id, context="Error LLM", requirements=[])]).requirements

    async def process_batch(batch):
        results = await asyncio.gather(*(process_document(doc) for doc in batch))
        return [item for sublist in results for item in sublist]

    all_requirements = []

    if n_docs <= 30:
        batch_results = await process_batch(documents)
        all_requirements.extend(batch_results)
    else:
        batch_size = 30
        batches = [documents[i:i + batch_size]
                   for i in range(0, n_docs, batch_size)]

        for i, batch in enumerate(batches):
            batch_results = await process_batch(batch)
            all_requirements.extend(batch_results)

            if i < len(batches) - 1:
                background_tasks.add_task(asyncio.sleep, 60)
    return RequirementsResponse(requirements=all_requirements)

# ======================================================================================================================================================================================


class ProgressUpdate(BaseModel):
    """Defines the structure of a single SSE message."""
    status: Literal["progress", "complete"]
    data: dict
    total_docs: int
    processed_docs: int


@router.post("/generate_requirements/sse")
async def gen_reqs(req: RequirementsRequest, con: Request, llm_router: Router = Depends(get_llm_router)):
    """Extract requirements from the specified TDocs using a LLM and returns SSE events about the progress of ongoing operations"""

    documents = req.documents
    n_docs = len(documents)

    logging.info("Generating requirements for documents: {}".format(
        [doc.document for doc in documents]))

    # limit max concurrency of LLM requests to prevent a huge pile of errors because of small rate limits
    concurrency_sema = asyncio.Semaphore(4)

    def prompt(doc_id, full):
        return f"Here's the document whose ID is {doc_id} : {full}\n\nExtract all requirements and group them by context, returning a list of objects where each object includes a document ID, a concise description of the context where the requirements apply (not a chapter title or copied text), and a list of associated requirements; always return the result as a list, even if only one context is found. Remove the errors"

    async def _process_document(doc) -> list[DocRequirements]:
        doc_id = doc.document
        url = doc.url

        # convert the docx to txt for use
        try:
            full = "\n".join(docx_to_txt(doc_id, url))
        except Exception as e:
            logging.error(
                f"Failed to process document {doc_id}", e, stack_info=True)
            return [DocRequirements(document=doc_id, context="Error LLM", requirements=[])]

        try:
            await concurrency_sema.acquire()

            model_used = "gemini-v2"
            resp_ai = await llm_router.acompletion(
                model=model_used,
                messages=[
                    {"role": "user", "content": prompt(doc_id, full)}],
                response_format=RequirementsResponse
            )
            return RequirementsResponse.model_validate_json(resp_ai.choices[0].message.content).requirements
        except Exception as e:
            return [DocRequirements(document=doc_id, context="Error LLM", requirements=[])]
        finally:
            concurrency_sema.release()

    # futures for all processed documents
    process_futures = [_process_document(doc) for doc in documents]

    # lambda to print progress
    def progress_update(x): return f"data: {x.model_dump_json()}\n\n"

    # async generator that generates  the SSE events for progress
    async def _stream_generator(docs: list[asyncio.Future]):
        items = []
        n_processed = 0

        yield progress_update(ProgressUpdate(status="progress", data={}, total_docs=n_docs, processed_docs=0))

        for doc in asyncio.as_completed(docs):
            result = await doc
            items.extend(result)
            n_processed += 1
            yield progress_update(ProgressUpdate(status="progress", data={}, total_docs=n_docs, processed_docs=n_processed))

            final_response = RequirementsResponse(requirements=items)

        yield progress_update(ProgressUpdate(status="complete", data=final_response.model_dump(), total_docs=n_docs, processed_docs=n_processed))

    return StreamingResponse(_stream_generator(process_futures), media_type="text/event-stream")