File size: 16,739 Bytes
98ad3a1
e5e6ba2
 
 
 
 
 
 
 
 
fbb9428
 
98ad3a1
0209368
fbb9428
98ad3a1
 
 
f908aec
fbb9428
e5e6ba2
 
 
 
 
591e68e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13ee1ce
 
 
 
 
 
 
591e68e
 
 
 
 
13ee1ce
 
 
 
 
 
 
 
 
 
 
591e68e
 
 
 
 
 
 
 
fbb9428
5460a4a
b1d8650
5460a4a
baca904
 
fbb9428
 
 
 
 
 
 
98ad3a1
 
 
 
 
 
ebb6bdc
98ad3a1
 
 
 
 
e8d518e
98ad3a1
 
 
 
 
e8d518e
98ad3a1
 
 
6e5318d
f908aec
fbb9428
e5e6ba2
a949598
 
e5e6ba2
de42c12
 
 
e5e6ba2
 
 
 
 
f908aec
 
8c3956a
f908aec
8c3956a
 
 
 
 
009c740
e85fc80
f908aec
8c3956a
e5e6ba2
e6376d0
e5e6ba2
 
 
a949598
e5e6ba2
718fa4c
e5e6ba2
 
 
 
 
 
 
e85fc80
0209368
 
 
 
e85fc80
 
0209368
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f908aec
5460a4a
74c9c64
d80c981
0209368
459baae
 
0209368
 
 
 
 
 
e5e6ba2
009c740
 
e5e6ba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3dae47
 
 
e5e6ba2
 
9b21883
f87e37d
e5e6ba2
9b21883
d80c981
 
 
 
 
 
 
 
 
f87e37d
e5e6ba2
 
 
d3f79d4
13ee1ce
 
 
d3f79d4
 
591e68e
 
13ee1ce
591e68e
13ee1ce
 
e5e6ba2
591e68e
d3f79d4
e5e6ba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4b40f3
e5e6ba2
 
ba05602
 
 
e5e6ba2
 
 
 
 
 
 
 
 
 
 
 
7944fcb
b3dae47
e5e6ba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f439b59
 
e5e6ba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de42c12
 
 
 
e5e6ba2
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
# from typing import Any, Coroutine
import openai
import os
from langchain.vectorstores import Chroma
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.chat_models import AzureChatOpenAI
from langchain.document_loaders import DirectoryLoader
from langchain.chains import RetrievalQA  
from langchain.vectorstores import Pinecone
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.agents import Tool
# from langchain.agents import load_tools
from langchain.tools import BaseTool
from langchain.tools import DuckDuckGoSearchRun
from langchain.utilities import WikipediaAPIWrapper
from langchain.python import PythonREPL
from langchain.chains import LLMMathChain

import pinecone      
from pinecone.core.client.configuration import Configuration as OpenApiConfiguration
import gradio as gr
import time

import glob
from typing import List
from multiprocessing import Pool
from tqdm import tqdm

from langchain.document_loaders import (
    CSVLoader,
    EverNoteLoader,
    PyMuPDFLoader,
    TextLoader,
    UnstructuredEmailLoader,
    UnstructuredEPubLoader,
    UnstructuredHTMLLoader,
    UnstructuredMarkdownLoader,
    UnstructuredODTLoader,
    UnstructuredPowerPointLoader,
    UnstructuredWordDocumentLoader,
)
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.docstore.document import Document

# Custom document loaders
class MyElmLoader(UnstructuredEmailLoader):
    """Wrapper to fallback to text/plain when default does not work"""

    def load(self) -> List[Document]:
        """Wrapper adding fallback for elm without html"""
        try:
            try:
                doc = UnstructuredEmailLoader.load(self)
            except ValueError as e:
                if 'text/html content not found in email' in str(e):
                    # Try plain text
                    self.unstructured_kwargs["content_source"]="text/plain"
                    doc = UnstructuredEmailLoader.load(self)
                else:
                    raise
        except Exception as e:
            # Add file_path to exception message
            raise type(e)(f"{self.file_path}: {e}") from e

        return doc
    
LOADER_MAPPING = {
    ".csv": (CSVLoader, {}),
    # ".docx": (Docx2txtLoader, {}),
    ".doc": (UnstructuredWordDocumentLoader, {}),
    ".docx": (UnstructuredWordDocumentLoader, {}),
    ".enex": (EverNoteLoader, {}),
    ".eml": (MyElmLoader, {}),
    ".epub": (UnstructuredEPubLoader, {}),
    ".html": (UnstructuredHTMLLoader, {}),
    ".md": (UnstructuredMarkdownLoader, {}),
    ".odt": (UnstructuredODTLoader, {}),
    ".pdf": (PyMuPDFLoader, {}),
    ".ppt": (UnstructuredPowerPointLoader, {}),
    ".pptx": (UnstructuredPowerPointLoader, {}),
    ".txt": (TextLoader, {"encoding": "utf8"}),
    # Add more mappings for other file extensions and loaders as needed
}

source_directory = 'Upload Files'
file_path = ''
chunk_size = 500
chunk_overlap = 300

def load_single_document(file_path: str) -> List[Document]:
    ext = "." + file_path.rsplit(".", 1)[-1]
    if ext in LOADER_MAPPING:
        loader_class, loader_args = LOADER_MAPPING[ext]
        loader = loader_class(file_path, **loader_args)
        return loader.load()

    raise ValueError(f"Unsupported file extension '{ext}'")


def load_documents(source_dir: str, ignored_files: List[str] = []) -> List[Document]:
    """

    Loads all documents from the source documents directory, ignoring specified files

    """
    all_files = []
    for ext in LOADER_MAPPING:
        all_files.extend(
            glob.glob(os.path.join(source_dir, f"**/*{ext}"), recursive=True)
        )
    filtered_files = [file_path for file_path in all_files if file_path not in ignored_files]

    with Pool(processes=os.cpu_count()) as pool:
        results = []
        with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar:
            for i, docs in enumerate(pool.imap_unordered(load_single_document, filtered_files)):
                results.extend(docs)
                pbar.update()

    return results

def process_documents(ignored_files: List[str] = []) -> List[Document]:
    """

    Load documents and split in chunks

    """
    print(f"Loading documents from {source_directory}")
    documents = load_documents(source_directory, ignored_files)
    if not documents:
        print("No new documents to load")
        exit(0)
    print(f"Loaded {len(documents)} new documents from {source_directory}")
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
    texts = text_splitter.split_documents(documents)
    print(f"Split into {len(texts)} chunks of text (max. {chunk_size} tokens each)")
    return texts

def process_documents_2(ignored_files: List[str] = []) -> List[Document]:
    """

    Load documents and split in chunks

    """
    print(f"Loading documents from {source_directory}")
    print("File Path to start processing:", file_path)
    documents = load_documents(file_path, ignored_files)
    if not documents:
        print("No new documents to load")
        exit(0)
    print(f"Loaded {len(documents)} new documents from {source_directory}")
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
    texts = text_splitter.split_documents(documents)
    print(f"Split into {len(texts)} chunks of text (max. {chunk_size} tokens each)")
    return texts

def UpdateDb():
    global vectordb_p
    # pinecone.Index(index_name).delete(delete_all=True, namespace='')
    # collection = vectordb_p.get()
    # split_docs = process_documents([metadata['source'] for metadata in collection['metadatas']])
    # split_docs = process_documents()
    split_docs = process_documents_2()
    tt = len(split_docs)
    print(split_docs[tt-1])
    print(f"Creating embeddings. May take some minutes...")
    vectordb_p = Pinecone.from_documents(split_docs, embeddings, index_name = "stla-baby")
    print("Pinecone Updated Done")
    print(index.describe_index_stats())


class DB_Search(BaseTool):
    name = "Vector Database Search"
    description = "This is the internal database to search information firstly. If information is found, it is trustful."
    def _run(self, query: str) -> str:
        response, source = QAQuery_p(query)
        # response = "test db_search feedback"
        return response

    def _arun(self, query: str):
        raise NotImplementedError("N/A")



Wikipedia = WikipediaAPIWrapper()
Netsearch = DuckDuckGoSearchRun()
Python_REPL = PythonREPL()

wikipedia_tool = Tool(
    name = "Wikipedia Search",
    func = Wikipedia.run,
    description = "Useful to search a topic, country or person when there is no availble information in vector database"
)

duckduckgo_tool = Tool(
    name = "Duckduckgo Internet Search",
    func = Netsearch.run,
    description = "Useful to search information in internet when it is not available in other tools"    
)

python_tool = Tool(
    name = "Python REPL",
    func = Python_REPL.run,
    description = "Useful when you need python to answer questions. You should input python code."    
)

# tools = [DB_Search(), wikipedia_tool, duckduckgo_tool, python_tool]


os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
os.environ["OPENAI_API_BASE"] = os.getenv("OPENAI_API_BASE")
os.environ["OPENAI_API_VERSION"] = "2023-05-15"
username = os.getenv("username")
password = os.getenv("password")
SysLock = os.getenv("SysLock") # 0=unlock 1=lock

chat = AzureChatOpenAI(
    deployment_name="Chattester",
    temperature=0,
)
llm = chat

llm_math = LLMMathChain.from_llm(llm)

math_tool = Tool(
    name ='Calculator',
    func = llm_math.run,
    description ='Useful for when you need to answer questions about math.'
)

tools = [DB_Search(), duckduckgo_tool, wikipedia_tool, python_tool, math_tool]

# tools = load_tools(["Vector Database Search","Wikipedia Search","Python REPL","llm-math"], llm=llm)

embeddings = OpenAIEmbeddings(deployment="model_embedding", chunk_size=15)


pinecone.init(      
	api_key = os.getenv("pinecone_api_key"),      
	environment='asia-southeast1-gcp-free',
    # openapi_config=openapi_config      
)
index_name = 'stla-baby'     
index = pinecone.Index(index_name)
# index.delete(delete_all=True, namespace='')
# print(pinecone.whoami())
# print(index.describe_index_stats())

PREFIX = """Answer the following questions as best you can with details. You must always check internal vector database first and try to answer the question based on the information in internal vector database only.

Only when there is no information available from vector database, you can search information by using another tools.

You have access to the following tools:



Vector Database Search: This is the internal database to search information firstly. If information is found, it is trustful.

Duckduckgo Internet Search: Useful to search information in internet when it is not available in other tools.

Wikipedia Search: Useful to search a topic, country or person when there is no availble information in vector database

Python REPL: Useful when you need python to answer questions. You should input python code.

Calculator: Useful for when you need to answer questions about math."""

FORMAT_INSTRUCTIONS = """Use the following format:



Question: the input question you must answer

Thought: you should always think about what to do

Action: the action to take, should be one of [Vector Database Search, Duckduckgo Internet Search, Python REPL, Calculator]

Action Input: the input to the action

Observation: the result of the action

... (this Thought/Action/Action Input/Observation can repeat N times)

Thought: I now know the final answer

Final Answer: the final answer to the original input question"""

SUFFIX = """Begin!

Question: {input}

Thought:{agent_scratchpad}"""

agent = initialize_agent(tools, llm, 
                         agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
                         verbose = True,
                         handle_parsing_errors = True,
                         max_iterations = int(os.getenv("max_iterations")),
                         early_stopping_method="generate",
                         agent_kwargs={
                            'prefix': PREFIX,
                            'format_instructions': FORMAT_INSTRUCTIONS,
                            'suffix': SUFFIX
                         }
                         )

print(agent.agent.llm_chain.prompt.template)

global vectordb
vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
global vectordb_p
vectordb_p = Pinecone.from_existing_index(index_name, embeddings)

# loader = DirectoryLoader('./documents', glob='**/*.txt')
# documents = loader.load()
# text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200)
# split_docs = text_splitter.split_documents(documents)
# print(split_docs)
# vectordb = Chroma.from_documents(split_docs, embeddings, persist_directory='db')



# question = "what is LCDV ?"
# rr = vectordb.similarity_search(query=question, k=4)
# vectordb.similarity_search(question)
# print(type(rr))
# print(rr)
def chathmi(message, history):
    # response = "I don't know"
    # print(message)
    response, source = QAQuery_p(message)
    time.sleep(0.3)
    print(history)
    yield response
    # yield history

def chathmi2(message, history):
    try:
        output = agent.run(message)
        time.sleep(0.3)
        print("History: ", history)
        response = output
        yield response
    except Exception as e:
        print("error:", e)

    # yield history
# chatbot = gr.Chatbot().style(color_map =("blue", "pink"))
# chatbot = gr.Chatbot(color_map =("blue", "pink"))

def func_upload_file(files, chat_history):
    file_path = files
    print(file_path)
    # UpdateDb()
    chat_history.append("Test File Upload")
    return chat_history

with gr.Blocks() as demo:
    main = gr.ChatInterface(
        chathmi2,
        title="STLA BABY - YOUR FRIENDLY GUIDE",
        description= "v0.3: Powered by MECH Core Team",
    )
    upload_button = gr.UploadButton("Upload File", file_count="multiple")
    upload_button.upload(func_upload_file, [upload_button, main.chatbot], main.chatbot)

# demo = gr.Interface(
#     chathmi,
#     ["text", "state"],
#     [chatbot, "state"],
#     allow_flagging="never",
# )

def CreatDb_P():
    global vectordb_p
    index_name = 'stla-baby'
    loader = DirectoryLoader('./documents', glob='**/*.txt')
    documents = loader.load()
    text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200)
    split_docs = text_splitter.split_documents(documents)
    print(split_docs)
    pinecone.Index(index_name).delete(delete_all=True, namespace='')
    vectordb_p = Pinecone.from_documents(split_docs, embeddings, index_name = "stla-baby")
    print("Pinecone Updated Done")
    print(index.describe_index_stats())

def QAQuery_p(question: str):
    global vectordb_p
    # vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
    retriever = vectordb_p.as_retriever()
    retriever.search_kwargs['k'] = int(os.getenv("search_kwargs_k"))
    # retriever.search_kwargs['fetch_k'] = 100

    qa = RetrievalQA.from_chain_type(llm=chat, chain_type="stuff", 
                                     retriever=retriever, return_source_documents = True,
                                     verbose = True)
    # qa = VectorDBQA.from_chain_type(llm=chat, chain_type="stuff", vectorstore=vectordb, return_source_documents=True)
    # res = qa.run(question)
    res = qa({"query": question})
    
    print("-" * 20)
    print("Question:", question)
    # print("Answer:", res)
    print("Answer:", res['result'])
    print("-" * 20)
    print("Source:", res['source_documents'])
    response = res['result']
    # response = res['source_documents']
    source = res['source_documents']
    return response, source

def CreatDb():
    global vectordb
    loader = DirectoryLoader('./documents', glob='**/*.txt')
    documents = loader.load()
    text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200)
    split_docs = text_splitter.split_documents(documents)
    print(split_docs)
    vectordb = Chroma.from_documents(split_docs, embeddings, persist_directory='db')
    vectordb.persist()

def QAQuery(question: str):
    global vectordb
    # vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
    retriever = vectordb.as_retriever()
    retriever.search_kwargs['k'] = 3
    # retriever.search_kwargs['fetch_k'] = 100

    qa = RetrievalQA.from_chain_type(llm=chat, chain_type="stuff", retriever=retriever, return_source_documents = True)
    # qa = VectorDBQA.from_chain_type(llm=chat, chain_type="stuff", vectorstore=vectordb, return_source_documents=True)
    # res = qa.run(question)
    res = qa({"query": question})
    
    print("-" * 20)
    print("Question:", question)
    # print("Answer:", res)
    print("Answer:", res['result'])
    print("-" * 20)
    print("Source:", res['source_documents'])
    response = res['result']
    return response

# Used to complete content
def completeText(Text): 
    deployment_id="Chattester"
    prompt = Text
    completion = openai.Completion.create(deployment_id=deployment_id,
                                        prompt=prompt, temperature=0)                              
    print(f"{prompt}{completion['choices'][0]['text']}.")

# Used to chat
def chatText(Text): 
    deployment_id="Chattester"
    conversation = [{"role": "system", "content": "You are a helpful assistant."}]
    user_input = Text
    conversation.append({"role": "user", "content": user_input})
    response = openai.ChatCompletion.create(messages=conversation,
        deployment_id="Chattester")
    print("\n" + response["choices"][0]["message"]["content"] + "\n")

if __name__ == '__main__':
    # chatText("what is AI?")
    # CreatDb()
    # QAQuery("what is COFOR ?")
    # CreatDb_P()
    # QAQuery_p("what is GST ?")
    if SysLock == "1":
        demo.queue().launch(auth=(username, password))
    else:
        demo.queue().launch()
    pass