File size: 1,237 Bytes
ac7a019
 
 
 
536ddea
ac7a019
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# app.py
import gradio as gr
import os

from inference_runner import MaIR_Upsampler

model_cache = {}

def get_model(model_name):
    """Loads a model into the cache if it's not already there."""
    if model_name not in model_cache:
        print(f"Loading model {model_name} into cache...")
        model_cache[model_name] = MaIR_Upsampler(model_name=model_name)
    return model_cache[model_name]

def inference_api(image, model_name):
    """
    This is the function that the API will call.
    It takes a NumPy array and a model name string as input.
    """
    if image is None:
        raise ValueError("No image provided.")
    
    upsampler = get_model(model_name)
    output_image = upsampler.process(image)
    return output_image

interface = gr.Interface(
    fn=inference_api,
    inputs=[
        gr.Image(type="numpy", label="Input Image"),
        gr.Dropdown(
            choices=['MaIR-SRx4', 'MaIR-SRx2', 'MaIR-CDN-s50'], 
            value='MaIR-SRx4', 
            label="Select Model"
        ),
    ],
    outputs=gr.Image(type="numpy", label="Output Image"),
    title="MaIR: Image Restoration API",
    description="API for MaIR models. Use the '/api' endpoint for programmatic access."
)

interface.launch()