MaIR / analysis /utils_fvcore.py
P-rateek's picture
Upload 5 files
fc90e17 verified
import os
from typing import Callable
import torch
import torch.nn as nn
import torch
import torch.nn as nn
from typing import Callable, Tuple, Union, Tuple, Union, Any
HOME = os.environ["HOME"].rstrip("/")
print('HOME', HOME)
def import_abspy(name="models", path="classification/"):
import sys
import importlib
path = os.path.abspath(path)
print(path)
assert os.path.isdir(path)
sys.path.insert(0, path)
module = importlib.import_module(name)
sys.path.pop(0)
return module
def print_jit_input_names(inputs):
print("input params: ", end=" ", flush=True)
try:
for i in range(10):
print(inputs[i].debugName(), end=" ", flush=True)
except Exception as e:
pass
print("", flush=True)
def flops_selective_scan_ref(B=1, L=256, D=768, N=16, with_D=True, with_Z=False, with_Group=True, with_complex=False):
"""
u: r(B D L)
delta: r(B D L)
A: r(D N)
B: r(B N L)
C: r(B N L)
D: r(D)
z: r(B D L)
delta_bias: r(D), fp32
ignores:
[.float(), +, .softplus, .shape, new_zeros, repeat, stack, to(dtype), silu]
"""
import numpy as np
# fvcore.nn.jit_handles
def get_flops_einsum(input_shapes, equation):
np_arrs = [np.zeros(s) for s in input_shapes]
optim = np.einsum_path(equation, *np_arrs, optimize="optimal")[1]
for line in optim.split("\n"):
if "optimized flop" in line.lower():
# divided by 2 because we count MAC (multiply-add counted as one flop)
flop = float(np.floor(float(line.split(":")[-1]) / 2))
return flop
assert not with_complex
flops = 0 # below code flops = 0
flops += get_flops_einsum([[B, D, L], [D, N]], "bdl,dn->bdln")
if with_Group:
flops += get_flops_einsum([[B, D, L], [B, N, L], [B, D, L]], "bdl,bnl,bdl->bdln")
else:
flops += get_flops_einsum([[B, D, L], [B, D, N, L], [B, D, L]], "bdl,bdnl,bdl->bdln")
in_for_flops = B * D * N
if with_Group:
in_for_flops += get_flops_einsum([[B, D, N], [B, D, N]], "bdn,bdn->bd")
else:
in_for_flops += get_flops_einsum([[B, D, N], [B, N]], "bdn,bn->bd")
flops += L * in_for_flops
if with_D:
flops += B * D * L
if with_Z:
flops += B * D * L
return flops
def flops_selective_scan_fn(B=1, L=256, D=768, N=16, with_D=True, with_Z=False, with_complex=False):
assert not with_complex
# https://github.com/state-spaces/mamba/issues/110
flops = 9 * B * L * D * N
if with_D:
flops += B * D * L
if with_Z:
flops += B * D * L
return flops
def selective_scan_flop_jit(inputs, outputs, backend="prefixsum", verbose=True):
if verbose:
print_jit_input_names(inputs)
flops_fn = flops_selective_scan_ref if backend == "naive" else flops_selective_scan_fn
B, D, L = inputs[0].type().sizes()
N = inputs[2].type().sizes()[1]
flops = flops_fn(B=B, L=L, D=D, N=N, with_D=True, with_Z=False)
return flops
# used for print flops
class FLOPs:
@staticmethod
def register_supported_ops():
#build = import_abspy("models", os.path.join(os.path.dirname(os.path.abspath(__file__)), "../classification/"))
# selective_scan_flop_jit: Callable = selective_scan_flop_jit
# flops_selective_scan_fn: Callable = build.vmamba.flops_selective_scan_fn
# flops_selective_scan_ref: Callable = build.vmamba.flops_selective_scan_ref
supported_ops = {
"aten::gelu": None, # as relu is in _IGNORED_OPS
"aten::silu": None, # as relu is in _IGNORED_OPS
"aten::neg": None, # as relu is in _IGNORED_OPS
"aten::exp": None, # as relu is in _IGNORED_OPS
"aten::flip": None, # as permute is in _IGNORED_OPS
"prim::PythonOp.SelectiveScanFn": selective_scan_flop_jit, # latter
"prim::PythonOp.SelectiveScanMamba": selective_scan_flop_jit, # latter
"prim::PythonOp.SelectiveScanOflex": selective_scan_flop_jit, # latter
"prim::PythonOp.SelectiveScanCore": selective_scan_flop_jit, # latter
"prim::PythonOp.SelectiveScan": selective_scan_flop_jit, # latter
"prim::PythonOp.SelectiveScanCuda": selective_scan_flop_jit, # latter
# "aten::scaled_dot_product_attention": ...
}
return supported_ops
@staticmethod
def check_operations(model: nn.Module, inputs=None, input_shape=(3, 224, 224)):
from fvcore.nn.jit_analysis import _get_scoped_trace_graph, _named_modules_with_dup, Counter, JitModelAnalysis
if inputs is None:
assert input_shape is not None
if len(input_shape) == 1:
input_shape = (1, 3, input_shape[0], input_shape[0])
elif len(input_shape) == 2:
input_shape = (1, 3, *input_shape)
elif len(input_shape) == 3:
input_shape = (1, *input_shape)
else:
assert len(input_shape) == 4
inputs = (torch.randn(input_shape).to(next(model.parameters()).device),)
model.eval()
flop_counter = JitModelAnalysis(model, inputs)
flop_counter._ignored_ops = set()
flop_counter._op_handles = dict()
assert flop_counter.total() == 0 # make sure no operations supported
print(flop_counter.unsupported_ops(), flush=True)
print(f"supported ops {flop_counter._op_handles}; ignore ops {flop_counter._ignored_ops};", flush=True)
@classmethod
def fvcore_flop_count(cls, model: nn.Module, inputs=None, input_shape=(3, 224, 224), show_table=False,
show_arch=False, verbose=True):
supported_ops = cls.register_supported_ops()
from fvcore.nn.parameter_count import parameter_count as fvcore_parameter_count
from fvcore.nn.flop_count import flop_count, FlopCountAnalysis, _DEFAULT_SUPPORTED_OPS
from fvcore.nn.print_model_statistics import flop_count_str, flop_count_table
from fvcore.nn.jit_analysis import _IGNORED_OPS
from fvcore.nn.jit_handles import get_shape, addmm_flop_jit
if inputs is None:
assert input_shape is not None
if len(input_shape) == 1:
input_shape = (1, 3, input_shape[0], input_shape[0])
elif len(input_shape) == 2:
input_shape = (1, 3, *input_shape)
elif len(input_shape) == 3:
input_shape = (1, *input_shape)
else:
assert len(input_shape) == 4
inputs = (torch.randn(input_shape).to(next(model.parameters()).device),)
model.eval()
print("model Prepared")
Gflops, unsupported = flop_count(model=model, inputs=inputs, supported_ops=supported_ops)
print("flop_count Done")
flops_table = flop_count_table(
flops=FlopCountAnalysis(model, inputs).set_op_handle(**supported_ops),
max_depth=100,
activations=None,
show_param_shapes=True,
)
flops_str = flop_count_str(
flops=FlopCountAnalysis(model, inputs).set_op_handle(**supported_ops),
activations=None,
)
if show_arch:
print(flops_str)
if show_table:
print(flops_table)
params = fvcore_parameter_count(model)[""]
flops = sum(Gflops.values())
if verbose:
print(Gflops.items())
print("GFlops: ", flops, "Params: ", params, flush=True)
return params, flops
# equals with fvcore_flop_count
@classmethod
def mmengine_flop_count(cls, model: nn.Module = None, input_shape=(3, 224, 224), show_table=False, show_arch=False,
_get_model_complexity_info=False):
supported_ops = cls.register_supported_ops()
from mmengine.analysis.print_helper import is_tuple_of, FlopAnalyzer, ActivationAnalyzer, parameter_count, \
_format_size, complexity_stats_table, complexity_stats_str
from mmengine.analysis.jit_analysis import _IGNORED_OPS
from mmengine.analysis.complexity_analysis import _DEFAULT_SUPPORTED_FLOP_OPS, _DEFAULT_SUPPORTED_ACT_OPS
from mmengine.analysis import get_model_complexity_info as mm_get_model_complexity_info
# modified from mmengine.analysis
def get_model_complexity_info(
model: nn.Module,
input_shape: Union[Tuple[int, ...], Tuple[Tuple[int, ...], ...],
None] = None,
inputs: Union[torch.Tensor, Tuple[torch.Tensor, ...], Tuple[Any, ...],
None] = None,
show_table: bool = True,
show_arch: bool = True,
):
if input_shape is None and inputs is None:
raise ValueError('One of "input_shape" and "inputs" should be set.')
elif input_shape is not None and inputs is not None:
raise ValueError('"input_shape" and "inputs" cannot be both set.')
if inputs is None:
device = next(model.parameters()).device
if is_tuple_of(input_shape, int): # tuple of int, construct one tensor
inputs = (torch.randn(1, *input_shape).to(device),)
elif is_tuple_of(input_shape, tuple) and all([
is_tuple_of(one_input_shape, int)
for one_input_shape in input_shape # type: ignore
]): # tuple of tuple of int, construct multiple tensors
inputs = tuple([
torch.randn(1, *one_input_shape).to(device)
for one_input_shape in input_shape # type: ignore
])
else:
raise ValueError(
'"input_shape" should be either a `tuple of int` (to construct'
'one input tensor) or a `tuple of tuple of int` (to construct'
'multiple input tensors).')
flop_handler = FlopAnalyzer(model, inputs).set_op_handle(**supported_ops)
# activation_handler = ActivationAnalyzer(model, inputs)
flops = flop_handler.total()
# activations = activation_handler.total()
params = parameter_count(model)['']
flops_str = _format_size(flops)
# activations_str = _format_size(activations)
params_str = _format_size(params)
if show_table:
complexity_table = complexity_stats_table(
flops=flop_handler,
# activations=activation_handler,
show_param_shapes=True,
)
complexity_table = '\n' + complexity_table
else:
complexity_table = ''
if show_arch:
complexity_arch = complexity_stats_str(
flops=flop_handler,
# activations=activation_handler,
)
complexity_arch = '\n' + complexity_arch
else:
complexity_arch = ''
return {
'flops': flops,
'flops_str': flops_str,
# 'activations': activations,
# 'activations_str': activations_str,
'params': params,
'params_str': params_str,
'out_table': complexity_table,
'out_arch': complexity_arch
}
if _get_model_complexity_info:
return get_model_complexity_info
model.eval()
analysis_results = get_model_complexity_info(
model,
input_shape,
show_table=show_table,
show_arch=show_arch,
)
flops = analysis_results['flops_str']
params = analysis_results['params_str']
# activations = analysis_results['activations_str']
out_table = analysis_results['out_table']
out_arch = analysis_results['out_arch']
if show_arch:
print(out_arch)
if show_table:
print(out_table)
split_line = '=' * 30
print(f'{split_line}\nInput shape: {input_shape}\t'
f'Flops: {flops}\tParams: {params}\t'
# f'Activation: {activations}\n{split_line}'
, flush=True)
# print('!!!Only the backbone network is counted in FLOPs analysis.')
# print('!!!Please be cautious if you use the results in papers. '
# 'You may need to check if all ops are supported and verify that the '
# 'flops computation is correct.')