|
|
|
import math |
|
import torch |
|
import torch.nn as nn |
|
import torch.utils.checkpoint as checkpoint |
|
import torch.nn.functional as F |
|
from functools import partial |
|
from typing import Optional, Callable |
|
from timm.models.layers import DropPath, to_2tuple, trunc_normal_ |
|
try: |
|
from mamba_main.mamba_ssm.ops.selective_scan_interface import selective_scan_fn, selective_scan_ref |
|
except Exception: |
|
from mamba_main.mamba_ssm.ops.selective_scan_interface import selective_scan_fn, selective_scan_ref |
|
selective_scan_fn = selective_scan_ref |
|
from einops import rearrange, repeat |
|
import time |
|
import sys |
|
|
|
sys.path.append('/xlearning/boyun/codes/MaIR') |
|
try: |
|
from basicsr.archs.shift_scanf_util import mair_ids_generate, mair_ids_scan, mair_ids_inverse, mair_shift_ids_generate |
|
from basicsr.utils.registry import ARCH_REGISTRY |
|
except: |
|
from shift_scanf_util import mair_ids_generate, mair_ids_scan, mair_ids_inverse, mair_shift_ids_generate |
|
|
|
NEG_INF = -1000000 |
|
|
|
|
|
class ShuffleAttn(nn.Module): |
|
def __init__(self, in_features, out_features, hidden_features=None, group=4, act_layer=nn.GELU, input_resolution=(64,64)): |
|
super().__init__() |
|
self.group = group |
|
self.input_resolution = input_resolution |
|
self.in_features = in_features |
|
self.out_features = out_features |
|
|
|
self.gating = nn.Sequential( |
|
nn.AdaptiveAvgPool2d(1), |
|
nn.Conv2d(in_features, out_features, groups=self.group, kernel_size=1, stride=1, padding=0), |
|
nn.Sigmoid() |
|
) |
|
|
|
def channel_shuffle(self, x): |
|
batchsize, num_channels, height, width = x.data.size() |
|
assert num_channels % self.group == 0 |
|
group_channels = num_channels // self.group |
|
|
|
x = x.reshape(batchsize, group_channels, self.group, height, width) |
|
x = x.permute(0, 2, 1, 3, 4) |
|
x = x.reshape(batchsize, num_channels, height, width) |
|
|
|
return x |
|
|
|
def channel_rearrange(self,x): |
|
batchsize, num_channels, height, width = x.data.size() |
|
assert num_channels % self.group == 0 |
|
group_channels = num_channels // self.group |
|
|
|
x = x.reshape(batchsize, self.group, group_channels, height, width) |
|
x = x.permute(0, 2, 1, 3, 4) |
|
x = x.reshape(batchsize, num_channels, height, width) |
|
|
|
return x |
|
|
|
def forward(self, x): |
|
x = self.channel_shuffle(x) |
|
x = self.gating(x) |
|
x = self.channel_rearrange(x) |
|
|
|
return x |
|
|
|
def flops(self): |
|
flops = 0 |
|
H, W = self.input_resolution |
|
|
|
|
|
flops += H * W * self.in_features |
|
|
|
|
|
flops += H * W * self.in_features * self.out_features // self.group |
|
|
|
|
|
flops += H * W * self.out_features * 4 |
|
return flops |
|
|
|
|
|
class Mlp(nn.Module): |
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0., input_resolution=(64,64)): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.in_features = in_features |
|
self.hidden_features = hidden_features |
|
self.input_resolution = input_resolution |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.fc2(x) |
|
return x |
|
|
|
def flops(self): |
|
flops = 0 |
|
H, W = self.input_resolution |
|
|
|
flops += 2 * H * W * self.in_features * self.hidden_features |
|
flops += H * W * self.hidden_features |
|
|
|
return flops |
|
|
|
|
|
class VMM(nn.Module): |
|
def __init__( |
|
self, |
|
d_model, |
|
d_state=16, |
|
d_conv=3, |
|
expand=2., |
|
dt_rank="auto", |
|
dt_min=0.001, |
|
dt_max=0.1, |
|
dt_init="random", |
|
dt_scale=1.0, |
|
dt_init_floor=1e-4, |
|
dropout=0., |
|
conv_bias=True, |
|
bias=False, |
|
device=None, |
|
dtype=None, |
|
input_resolution=(64, 64), |
|
**kwargs, |
|
): |
|
factory_kwargs = {"device": device, "dtype": dtype} |
|
super().__init__() |
|
self.d_model = d_model |
|
self.d_state = d_state |
|
self.d_conv = d_conv |
|
self.expand = expand |
|
self.d_inner = int(self.expand * self.d_model) |
|
self.dt_rank = math.ceil(self.d_model / 16) if dt_rank == "auto" else dt_rank |
|
self.input_resolution = input_resolution |
|
|
|
self.in_proj = nn.Linear(self.d_model, self.d_inner * 2, bias=bias, **factory_kwargs) |
|
self.conv2d = nn.Conv2d( |
|
in_channels=self.d_inner, |
|
out_channels=self.d_inner, |
|
groups=self.d_inner, |
|
bias=conv_bias, |
|
kernel_size=d_conv, |
|
padding=(d_conv - 1) // 2, |
|
**factory_kwargs, |
|
) |
|
self.act = nn.SiLU() |
|
|
|
self.x_proj = ( |
|
nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs), |
|
nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs), |
|
nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs), |
|
nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs), |
|
) |
|
self.x_proj_weight = nn.Parameter(torch.stack([t.weight for t in self.x_proj], dim=0)) |
|
del self.x_proj |
|
|
|
self.dt_projs = ( |
|
self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor, |
|
**factory_kwargs), |
|
self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor, |
|
**factory_kwargs), |
|
self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor, |
|
**factory_kwargs), |
|
self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor, |
|
**factory_kwargs), |
|
) |
|
self.dt_projs_weight = nn.Parameter(torch.stack([t.weight for t in self.dt_projs], dim=0)) |
|
self.dt_projs_bias = nn.Parameter(torch.stack([t.bias for t in self.dt_projs], dim=0)) |
|
del self.dt_projs |
|
|
|
self.A_logs = self.A_log_init(self.d_state, self.d_inner, copies=4, merge=True) |
|
self.Ds = self.D_init(self.d_inner, copies=4, merge=True) |
|
|
|
self.selective_scan = selective_scan_fn |
|
|
|
self.out_norm = nn.LayerNorm(self.d_inner) |
|
self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs) |
|
self.dropout = nn.Dropout(dropout) if dropout > 0. else None |
|
|
|
self.gating = ShuffleAttn(in_features=self.d_inner*4, out_features=self.d_inner*4, group=self.d_inner) |
|
|
|
@staticmethod |
|
def dt_init(dt_rank, d_inner, dt_scale=1.0, dt_init="random", dt_min=0.001, dt_max=0.1, dt_init_floor=1e-4, |
|
**factory_kwargs): |
|
dt_proj = nn.Linear(dt_rank, d_inner, bias=True, **factory_kwargs) |
|
|
|
|
|
dt_init_std = dt_rank ** -0.5 * dt_scale |
|
if dt_init == "constant": |
|
nn.init.constant_(dt_proj.weight, dt_init_std) |
|
elif dt_init == "random": |
|
nn.init.uniform_(dt_proj.weight, -dt_init_std, dt_init_std) |
|
else: |
|
raise NotImplementedError |
|
|
|
|
|
dt = torch.exp( |
|
torch.rand(d_inner, **factory_kwargs) * (math.log(dt_max) - math.log(dt_min)) |
|
+ math.log(dt_min) |
|
).clamp(min=dt_init_floor) |
|
|
|
inv_dt = dt + torch.log(-torch.expm1(-dt)) |
|
with torch.no_grad(): |
|
dt_proj.bias.copy_(inv_dt) |
|
|
|
dt_proj.bias._no_reinit = True |
|
|
|
return dt_proj |
|
|
|
@staticmethod |
|
def A_log_init(d_state, d_inner, copies=1, device=None, merge=True): |
|
|
|
A = repeat( |
|
torch.arange(1, d_state + 1, dtype=torch.float32, device=device), |
|
"n -> d n", |
|
d=d_inner, |
|
).contiguous() |
|
A_log = torch.log(A) |
|
if copies > 1: |
|
A_log = repeat(A_log, "d n -> r d n", r=copies) |
|
if merge: |
|
A_log = A_log.flatten(0, 1) |
|
A_log = nn.Parameter(A_log) |
|
A_log._no_weight_decay = True |
|
return A_log |
|
|
|
@staticmethod |
|
def D_init(d_inner, copies=1, device=None, merge=True): |
|
|
|
D = torch.ones(d_inner, device=device) |
|
if copies > 1: |
|
D = repeat(D, "n1 -> r n1", r=copies) |
|
if merge: |
|
D = D.flatten(0, 1) |
|
D = nn.Parameter(D) |
|
D._no_weight_decay = True |
|
return D |
|
|
|
def forward_core(self, x: torch.Tensor, |
|
mair_ids, |
|
x_proj_bias: torch.Tensor=None, |
|
): |
|
|
|
B, C, H, W = x.shape |
|
L = H * W |
|
D, N = self.A_logs.shape |
|
K, D, R = self.dt_projs_weight.shape |
|
K=4 |
|
|
|
xs = mair_ids_scan(x, mair_ids[0]) |
|
|
|
x_dbl = F.conv1d(xs.reshape(B, -1, L), self.x_proj_weight.reshape(-1, D, 1), bias=(x_proj_bias.reshape(-1) if x_proj_bias is not None else None), groups=K) |
|
dts, Bs, Cs = torch.split(x_dbl.reshape(B, K, -1, L), [R, N, N], dim=2) |
|
dts = F.conv1d(dts.reshape(B, -1, L), self.dt_projs_weight.reshape(K * D, -1, 1), groups=K) |
|
|
|
xs = xs.float().view(B, -1, L) |
|
dts = dts.contiguous().float().view(B, -1, L) |
|
Bs = Bs.float().view(B, K, -1, L) |
|
Cs = Cs.float().view(B, K, -1, L) |
|
out_y = self.selective_scan( |
|
xs, dts, |
|
-torch.exp(self.A_logs.float()).view(-1, self.d_state), Bs, Cs, self.Ds.float().view(-1), z=None, |
|
delta_bias=self.dt_projs_bias.float().view(-1), |
|
delta_softplus=True, |
|
return_last_state=False, |
|
).view(B, K, -1, L) |
|
assert out_y.dtype == torch.float |
|
|
|
return mair_ids_inverse(out_y, mair_ids[1], shape=(B, -1, H, W)) |
|
|
|
def forward(self, x: torch.Tensor, mair_ids, **kwargs): |
|
B, H, W, C = x.shape |
|
|
|
xz = self.in_proj(x) |
|
x, z = xz.chunk(2, dim=-1) |
|
|
|
x = x.permute(0, 3, 1, 2).contiguous() |
|
x = self.act(self.conv2d(x)) |
|
y = self.forward_core(x, mair_ids) |
|
assert y.dtype == torch.float32 |
|
y = y * self.gating(y) |
|
y1, y2, y3, y4 = torch.chunk(y, 4, dim=1) |
|
y = y1 + y2 + y3 + y4 |
|
y = y.permute(0, 2, 3, 1).contiguous() |
|
|
|
y = self.out_norm(y) |
|
y = y * F.silu(z) |
|
y = self.out_proj(y) |
|
if self.dropout is not None: |
|
y = self.dropout() |
|
return y |
|
|
|
def flops_forward_core(self, H, W): |
|
flops = 0 |
|
|
|
flops += 4 * (H * W) * self.d_inner * (self.dt_rank + self.d_state * 2) |
|
|
|
|
|
flops += 4 * (H * W) * self.dt_rank * self.d_inner |
|
|
|
|
|
|
|
|
|
flops += (4 * H * W) * (self.d_state * self.d_state * 2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
flops += 4 * 9 * H * W * self.d_inner * self.d_state |
|
|
|
return flops |
|
|
|
def flops(self): |
|
flops = 0 |
|
H, W = self.input_resolution |
|
|
|
flops += H * W * self.d_model * self.d_inner * 2 |
|
|
|
flops += H * W * self.d_inner * 3 * 3 + H * W * self.d_inner |
|
|
|
flops += self.flops_forward_core(H, W) |
|
|
|
flops += self.gating.flops() |
|
|
|
flops += 4 * H * W * self.d_inner |
|
|
|
flops += H * W * self.d_inner |
|
|
|
flops += 2 * H * W * self.d_inner |
|
|
|
|
|
flops += H * W * self.d_inner * self.d_model |
|
|
|
return flops |
|
|
|
|
|
class RMB(nn.Module): |
|
def __init__( |
|
self, |
|
hidden_dim: int = 0, |
|
drop_path: float = 0, |
|
norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6), |
|
attn_drop_rate: float = 0, |
|
d_state: int = 16, |
|
ssm_ratio: float = 2., |
|
input_resolution= (64, 64), |
|
is_light_sr: bool = False, |
|
shift_size=0, |
|
mlp_ratio=1.5, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
self.ln_1 = norm_layer(hidden_dim) |
|
self.self_attention = VMM(d_model=hidden_dim, d_state=d_state,expand=ssm_ratio,dropout=attn_drop_rate, input_resolution=input_resolution, **kwargs) |
|
self.drop_path = DropPath(drop_path) |
|
self.skip_scale= nn.Parameter(torch.ones(hidden_dim)) |
|
mlp_hidden_dim = int(hidden_dim * mlp_ratio) |
|
self.conv_blk = Mlp(in_features=hidden_dim, hidden_features=mlp_hidden_dim,input_resolution=input_resolution) |
|
|
|
self.ln_2 = nn.LayerNorm(hidden_dim) |
|
self.skip_scale2 = nn.Parameter(torch.ones(hidden_dim)) |
|
self.hidden_dim = hidden_dim |
|
self.input_resolution = input_resolution |
|
|
|
self.shift_size = shift_size |
|
|
|
def forward(self, input, mair_ids, x_size): |
|
|
|
B, L, C = input.shape |
|
input = input.view(B, *x_size, C).contiguous() |
|
|
|
x = self.ln_1(input) |
|
if self.shift_size > 0: |
|
x = input*self.skip_scale + self.drop_path(self.self_attention(x, (mair_ids[2], mair_ids[3]))) |
|
else: |
|
x = input*self.skip_scale + self.drop_path(self.self_attention(x, (mair_ids[0], mair_ids[1]))) |
|
|
|
x = x*self.skip_scale2 + self.conv_blk(self.ln_2(x)) |
|
|
|
x = x.reshape(B, -1, C) |
|
return x |
|
|
|
def flops(self): |
|
flops = 0 |
|
H, W = self.input_resolution |
|
|
|
flops += self.hidden_dim * H * W |
|
|
|
flops += self.self_attention.flops() |
|
|
|
flops += self.hidden_dim * H * W * 2 |
|
|
|
flops += self.hidden_dim * H * W |
|
|
|
flops += self.conv_blk.flops() |
|
|
|
flops += self.hidden_dim * H * W * 2 |
|
|
|
return flops |
|
|
|
|
|
|
|
class BasicLayer(nn.Module): |
|
""" The Basic MaIR Layer in one Residual Mamba Group |
|
Args: |
|
dim (int): Number of input channels. |
|
input_resolution (tuple[int]): Input resolution. |
|
depth (int): Number of blocks. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None |
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. |
|
""" |
|
|
|
def __init__(self, |
|
dim, |
|
input_resolution, |
|
depth, |
|
drop_path=0., |
|
d_state=16, |
|
ssm_ratio=2., |
|
norm_layer=nn.LayerNorm, |
|
downsample=None, |
|
use_checkpoint=False, |
|
is_light_sr=False, |
|
scan_len=4, |
|
mlp_ratio=2 |
|
): |
|
|
|
super().__init__() |
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
self.depth = depth |
|
self.ssm_ratio=ssm_ratio |
|
self.mlp_ratio=mlp_ratio |
|
self.use_checkpoint = use_checkpoint |
|
|
|
|
|
self.blocks = nn.ModuleList() |
|
for i in range(depth): |
|
self.blocks.append(RMB( |
|
hidden_dim=dim, |
|
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, |
|
norm_layer=nn.LayerNorm, |
|
attn_drop_rate=0, |
|
d_state=d_state, |
|
ssm_ratio=self.ssm_ratio, |
|
input_resolution=input_resolution, |
|
is_light_sr=is_light_sr, |
|
shift_size=0 if (i % 2 == 0) else scan_len // 2, |
|
mlp_ratio=self.mlp_ratio) |
|
) |
|
|
|
|
|
if downsample is not None: |
|
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer) |
|
else: |
|
self.downsample = None |
|
|
|
def forward(self, x, mair_ids, x_size): |
|
for blk in self.blocks: |
|
if self.use_checkpoint: |
|
x = checkpoint.checkpoint(blk, x) |
|
else: |
|
x = blk(x, mair_ids, x_size) |
|
if self.downsample is not None: |
|
x = self.downsample(x) |
|
return x |
|
|
|
def extra_repr(self) -> str: |
|
return f'dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}' |
|
|
|
def flops(self): |
|
flops = 0 |
|
for blk in self.blocks: |
|
flops += blk.flops() |
|
if self.downsample is not None: |
|
flops += self.downsample.flops() |
|
return flops |
|
|
|
|
|
@ARCH_REGISTRY.register() |
|
class MaIR(nn.Module): |
|
r""" Mamba-based Image Restoration Network (MaIR) |
|
A PyTorch implementation of : `MaIR: A Locality- and Continuity-Preserving Mamba for Image Restoration`. |
|
|
|
Args: |
|
img_size (int | tuple(int)): Input image size. Default 64 |
|
patch_size (int | tuple(int)): Patch size. Default: 1 |
|
in_chans (int): Number of input image channels. Default: 3 |
|
embed_dim (int): Patch embedding dimension. Default: 96 |
|
d_state (int): num of hidden state in the state space model. Default: 16 |
|
ssm_ratio (int): enlarge ratio in MaIR Module |
|
mlp_ratio (int): enlarge ratio in the hidden space of MLP |
|
depths (tuple(int)): Depth of each RSSG |
|
drop_rate (float): Dropout rate. Default: 0 |
|
drop_path_rate (float): Stochastic depth rate. Default: 0.1 |
|
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. |
|
patch_norm (bool): If True, add normalization after patch embedding. Default: True |
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False |
|
upscale: Upscale factor. 2/3/4 for image SR, 1 for denoising |
|
img_range: Image range. 1. or 255. |
|
upsampler: The reconstruction reconstruction module. 'pixelshuffle'/None |
|
resi_connection: The convolutional block before residual connection. '1conv'/'3conv' |
|
scan_len: Stripe width of the NSS |
|
""" |
|
def __init__(self, |
|
img_size=64, |
|
patch_size=1, |
|
in_chans=3, |
|
embed_dim=60, |
|
depths=(6, 6, 6, 6), |
|
drop_rate=0., |
|
d_state=16, |
|
ssm_ratio=1.5, |
|
drop_path_rate=0.1, |
|
norm_layer=nn.LayerNorm, |
|
patch_norm=True, |
|
use_checkpoint=False, |
|
upscale=2, |
|
img_range=1., |
|
upsampler='pixelshuffledirect', |
|
resi_connection='1conv', |
|
dynamic_ids=False, |
|
scan_len=8, |
|
mlp_ratio=2, |
|
**kwargs): |
|
|
|
super(MaIR, self).__init__() |
|
num_in_ch = in_chans |
|
num_out_ch = in_chans |
|
num_feat = 64 |
|
self.img_range = img_range |
|
if in_chans == 3: |
|
rgb_mean = (0.4488, 0.4371, 0.4040) |
|
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1) |
|
else: |
|
self.mean = torch.zeros(1, 1, 1, 1) |
|
self.upscale = upscale |
|
self.upsampler = upsampler |
|
self.ssm_ratio=ssm_ratio |
|
|
|
self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1) |
|
|
|
|
|
self.num_layers = len(depths) |
|
self.embed_dim = embed_dim |
|
self.patch_norm = patch_norm |
|
self.num_features = embed_dim |
|
self.num_out_ch = num_out_ch |
|
|
|
self.dynamic_ids = dynamic_ids |
|
self.scan_len = scan_len |
|
img_size_ids = to_2tuple(img_size) |
|
self.image_size = img_size_ids |
|
|
|
if not self.dynamic_ids: |
|
self._generate_ids((1, 1, img_size_ids[0], img_size_ids[1])) |
|
|
|
|
|
self.patch_embed = PatchEmbed( |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
in_chans=embed_dim, |
|
embed_dim=embed_dim, |
|
norm_layer=norm_layer if self.patch_norm else None) |
|
num_patches = self.patch_embed.num_patches |
|
patches_resolution = self.patch_embed.patches_resolution |
|
self.patches_resolution = patches_resolution |
|
|
|
|
|
self.patch_unembed = PatchUnEmbed( |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
in_chans=embed_dim, |
|
embed_dim=embed_dim, |
|
norm_layer=norm_layer if self.patch_norm else None) |
|
|
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
self.is_light_sr = True if self.upsampler=='pixelshuffledirect' else False |
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
|
|
|
|
self.layers = nn.ModuleList() |
|
for i_layer in range(self.num_layers): |
|
layer = RMG( |
|
dim=embed_dim, |
|
input_resolution=(patches_resolution[0], patches_resolution[1]), |
|
depth=depths[i_layer], |
|
d_state = d_state, |
|
ssm_ratio=self.ssm_ratio, |
|
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], |
|
norm_layer=norm_layer, |
|
downsample=None, |
|
use_checkpoint=use_checkpoint, |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
resi_connection=resi_connection, |
|
is_light_sr = self.is_light_sr, |
|
scan_len=scan_len, |
|
mlp_ratio=mlp_ratio |
|
) |
|
self.layers.append(layer) |
|
self.norm = norm_layer(self.num_features) |
|
|
|
|
|
if resi_connection == '1conv': |
|
self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1) |
|
elif resi_connection == '3conv': |
|
|
|
self.conv_after_body = nn.Sequential( |
|
nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True), |
|
nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2, inplace=True), |
|
nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1)) |
|
|
|
|
|
if self.upsampler == 'pixelshuffle': |
|
|
|
self.conv_before_upsample = nn.Sequential( |
|
nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True)) |
|
self.upsample = Upsample(upscale, num_feat) |
|
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) |
|
elif self.upsampler == 'pixelshuffledirect': |
|
|
|
self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch) |
|
|
|
else: |
|
|
|
self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {'absolute_pos_embed'} |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay_keywords(self): |
|
return {'relative_position_bias_table'} |
|
|
|
def _generate_ids(self, inp_shape): |
|
B,C,H,W = inp_shape |
|
|
|
xs_scan_ids, xs_inverse_ids = mair_ids_generate(inp_shape=(1, 1, H, W), scan_len=self.scan_len) |
|
if torch.cuda.is_available(): |
|
self.xs_scan_ids = xs_scan_ids.cuda() |
|
self.xs_inverse_ids = xs_inverse_ids.cuda() |
|
else: |
|
self.xs_scan_ids = xs_scan_ids |
|
self.xs_inverse_ids = xs_inverse_ids |
|
|
|
xs_shift_scan_ids, xs_shift_inverse_ids = mair_shift_ids_generate(inp_shape=(1, 1, H, W), scan_len=self.scan_len, shift_len=self.scan_len//2) |
|
if torch.cuda.is_available(): |
|
self.xs_shift_scan_ids = xs_shift_scan_ids.cuda() |
|
self.xs_shift_inverse_ids = xs_shift_inverse_ids.cuda() |
|
else: |
|
self.xs_shift_scan_ids = xs_shift_scan_ids |
|
self.xs_shift_inverse_ids = xs_shift_inverse_ids |
|
|
|
del xs_scan_ids, xs_inverse_ids, xs_shift_scan_ids, xs_shift_inverse_ids |
|
|
|
def forward_features(self, x): |
|
B,C,H,W = x.shape |
|
x_size = (x.shape[2], x.shape[3]) |
|
x = self.patch_embed(x) |
|
x = self.pos_drop(x) |
|
|
|
if self.dynamic_ids or (self.image_size != (H, W)): |
|
xs_scan_ids, xs_inverse_ids = mair_ids_generate(inp_shape=(1, 1, H, W), scan_len=self.scan_len) |
|
xs_shift_scan_ids, xs_shift_inverse_ids = mair_shift_ids_generate(inp_shape=(1, 1, H, W), scan_len=self.scan_len, shift_len=self.scan_len//2) |
|
if torch.cuda.is_available(): |
|
xs_scan_ids, xs_inverse_ids = xs_scan_ids.cuda(), xs_inverse_ids.cuda() |
|
xs_shift_scan_ids, xs_shift_inverse_ids = xs_shift_scan_ids.cuda(), xs_shift_inverse_ids.cuda() |
|
for layer in self.layers: |
|
x = layer(x, (xs_scan_ids, xs_inverse_ids, xs_shift_scan_ids, xs_shift_inverse_ids), x_size) |
|
else: |
|
for layer in self.layers: |
|
x = layer(x, (self.xs_scan_ids, self.xs_inverse_ids, self.xs_shift_scan_ids, self.xs_shift_inverse_ids), x_size) |
|
|
|
x = self.norm(x) |
|
x = self.patch_unembed(x, x_size) |
|
|
|
return x |
|
|
|
def forward(self, x): |
|
self.mean = self.mean.type_as(x) |
|
x = (x - self.mean) * self.img_range |
|
|
|
if self.upsampler == 'pixelshuffle': |
|
|
|
x = self.conv_first(x) |
|
x = self.conv_after_body(self.forward_features(x)) + x |
|
x = self.conv_before_upsample(x) |
|
x = self.conv_last(self.upsample(x)) |
|
|
|
elif self.upsampler == 'pixelshuffledirect': |
|
|
|
x = self.conv_first(x) |
|
x = self.conv_after_body(self.forward_features(x)) + x |
|
x = self.upsample(x) |
|
|
|
else: |
|
|
|
x_first = self.conv_first(x) |
|
res = self.conv_after_body(self.forward_features(x_first)) + x_first |
|
x = x + self.conv_last(res) |
|
|
|
x = x / self.img_range + self.mean |
|
|
|
return x |
|
|
|
def flops_layers(self): |
|
flops = 0 |
|
h, w = self.patches_resolution |
|
|
|
|
|
flops += self.patch_embed.flops() |
|
print("self.patches_resolution:", self.patches_resolution) |
|
|
|
for layer in self.layers: |
|
flops += layer.flops() |
|
|
|
|
|
flops += h * w * self.embed_dim |
|
|
|
|
|
flops += h * w * 9 * self.embed_dim * self.embed_dim |
|
|
|
|
|
flops += h * w * 9 * self.embed_dim * self.embed_dim |
|
|
|
|
|
flops += h * w * self.embed_dim |
|
|
|
return flops |
|
|
|
def flops(self): |
|
flops = 0 |
|
h, w = self.patches_resolution |
|
|
|
flops += h * w * 3 * self.embed_dim * 9 |
|
|
|
if self.upsampler == 'pixelshuffle': |
|
|
|
|
|
|
|
flops += self.flops_layers() |
|
|
|
|
|
|
|
flops += h * w * 9 * self.embed_dim * 64 |
|
flops += h * w * 64 |
|
|
|
|
|
if self.upscale == 2: |
|
flops += h * w * 9 * 64 * 4*64 |
|
elif self.upscale == 3: |
|
flops += h * w * 9 * 64 * 9*64 |
|
|
|
flops += h * w * 9 * 64 * 3 |
|
|
|
elif self.upsampler == 'pixelshuffledirect': |
|
|
|
flops += self.flops_layers() |
|
|
|
|
|
|
|
flops += h * w * 9 * self.embed_dim * (self.upscale**2) * self.num_out_ch |
|
|
|
return flops |
|
|
|
|
|
class RMG(nn.Module): |
|
"""Residual Mamba Group (RMG). |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
input_resolution (tuple[int]): Input resolution. |
|
depth (int): Number of blocks. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None |
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. |
|
img_size: Input image size. |
|
patch_size: Patch size. |
|
resi_connection: The convolutional block before residual connection. |
|
""" |
|
|
|
def __init__(self, |
|
dim, |
|
input_resolution, |
|
depth, |
|
d_state=16, |
|
ssm_ratio=4., |
|
drop_path=0., |
|
norm_layer=nn.LayerNorm, |
|
downsample=None, |
|
use_checkpoint=False, |
|
img_size=None, |
|
patch_size=None, |
|
resi_connection='1conv', |
|
is_light_sr = False, |
|
scan_len=4, |
|
mlp_ratio=2 |
|
): |
|
super(RMG, self).__init__() |
|
|
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
|
|
self.residual_group = BasicLayer( |
|
dim=dim, |
|
input_resolution=input_resolution, |
|
depth=depth, |
|
d_state = d_state, |
|
ssm_ratio=ssm_ratio, |
|
drop_path=drop_path, |
|
norm_layer=norm_layer, |
|
downsample=downsample, |
|
use_checkpoint=use_checkpoint, |
|
is_light_sr = is_light_sr, |
|
scan_len=scan_len, |
|
mlp_ratio = mlp_ratio |
|
) |
|
|
|
|
|
if resi_connection == '1conv': |
|
self.conv = nn.Conv2d(dim, dim, 3, 1, 1) |
|
elif resi_connection == '3conv': |
|
|
|
self.conv = nn.Sequential( |
|
nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True), |
|
nn.Conv2d(dim // 4, dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2, inplace=True), |
|
nn.Conv2d(dim // 4, dim, 3, 1, 1)) |
|
|
|
self.patch_embed = PatchEmbed( |
|
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None) |
|
|
|
self.patch_unembed = PatchUnEmbed( |
|
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None) |
|
|
|
def forward(self, x, mair_ids, x_size): |
|
return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, mair_ids, x_size), x_size))) + x |
|
|
|
def flops(self): |
|
flops = 0 |
|
flops += self.residual_group.flops() |
|
h, w = self.input_resolution |
|
flops += h * w * self.dim * self.dim * 9 |
|
flops += self.patch_embed.flops() |
|
flops += self.patch_unembed.flops() |
|
|
|
return flops |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
r""" transfer 2D feature map into 1D token sequence |
|
|
|
Args: |
|
img_size (int): Image size. Default: None. |
|
patch_size (int): Patch token size. Default: None. |
|
in_chans (int): Number of input image channels. Default: 3. |
|
embed_dim (int): Number of linear projection output channels. Default: 96. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: None |
|
""" |
|
|
|
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.patches_resolution = patches_resolution |
|
self.num_patches = patches_resolution[0] * patches_resolution[1] |
|
|
|
self.in_chans = in_chans |
|
self.embed_dim = embed_dim |
|
|
|
if norm_layer is not None: |
|
self.norm = norm_layer(embed_dim) |
|
else: |
|
self.norm = None |
|
|
|
def forward(self, x): |
|
x = x.flatten(2).transpose(1, 2) |
|
if self.norm is not None: |
|
x = self.norm(x) |
|
return x |
|
|
|
def flops(self): |
|
flops = 0 |
|
h, w = self.img_size |
|
if self.norm is not None: |
|
flops += h * w * self.embed_dim |
|
return flops |
|
|
|
|
|
class PatchUnEmbed(nn.Module): |
|
r""" return 2D feature map from 1D token sequence |
|
|
|
Args: |
|
img_size (int): Image size. Default: None. |
|
patch_size (int): Patch token size. Default: None. |
|
in_chans (int): Number of input image channels. Default: 3. |
|
embed_dim (int): Number of linear projection output channels. Default: 96. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: None |
|
""" |
|
|
|
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.patches_resolution = patches_resolution |
|
self.num_patches = patches_resolution[0] * patches_resolution[1] |
|
|
|
self.in_chans = in_chans |
|
self.embed_dim = embed_dim |
|
|
|
def forward(self, x, x_size): |
|
x = x.transpose(1, 2).view(x.shape[0], self.embed_dim, x_size[0], x_size[1]) |
|
return x |
|
|
|
def flops(self): |
|
flops = 0 |
|
return flops |
|
|
|
|
|
|
|
class UpsampleOneStep(nn.Sequential): |
|
"""UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle) |
|
Used in lightweight SR to save parameters. |
|
|
|
Args: |
|
scale (int): Scale factor. Supported scales: 2^n and 3. |
|
num_feat (int): Channel number of intermediate features. |
|
|
|
""" |
|
|
|
def __init__(self, scale, num_feat, num_out_ch): |
|
self.num_feat = num_feat |
|
m = [] |
|
m.append(nn.Conv2d(num_feat, (scale**2) * num_out_ch, 3, 1, 1)) |
|
m.append(nn.PixelShuffle(scale)) |
|
super(UpsampleOneStep, self).__init__(*m) |
|
|
|
class Upsample(nn.Sequential): |
|
"""Upsample module. |
|
|
|
Args: |
|
scale (int): Scale factor. Supported scales: 2^n and 3. |
|
num_feat (int): Channel number of intermediate features. |
|
""" |
|
|
|
def __init__(self, scale, num_feat): |
|
m = [] |
|
if (scale & (scale - 1)) == 0: |
|
for _ in range(int(math.log(scale, 2))): |
|
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) |
|
m.append(nn.PixelShuffle(2)) |
|
elif scale == 3: |
|
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) |
|
m.append(nn.PixelShuffle(3)) |
|
else: |
|
raise ValueError(f'scale {scale} is not supported. Supported scales: 2^n and 3.') |
|
super(Upsample, self).__init__(*m) |
|
|
|
def get_parameter_number(model): |
|
total_num = sum(p.numel() for p in model.parameters()) |
|
trainable_num = sum(p.numel() for p in model.parameters() if p.requires_grad) |
|
return {'Total': total_num, 'Trainable': trainable_num} |
|
|
|
if __name__ == '__main__': |
|
torch.cuda.set_device(7) |
|
|
|
net = MaIR(img_size=(320, 180), embed_dim=60, d_state=1, ssm_ratio=1.1, dynamic_ids=False, mlp_ratio=1.6,upscale=4).cuda() |
|
|
|
|
|
|
|
print(get_parameter_number(net)) |
|
|
|
print('FLOPS calculated by Ours: %.2f G'%(net.flops()/1e9)) |
|
|