dangminh214's picture
Clean initial commit (no large files, no LFS pointers)
b26e93d
"""
Copyright (c) 2024 The D-FINE Authors. All Rights Reserved.
"""
import cv2
import numpy as np
import onnxruntime as ort
import torch
import torchvision.transforms as T
from PIL import Image, ImageDraw
def resize_with_aspect_ratio(image, size, interpolation=Image.BILINEAR):
"""Resizes an image while maintaining aspect ratio and pads it."""
original_width, original_height = image.size
ratio = min(size / original_width, size / original_height)
new_width = int(original_width * ratio)
new_height = int(original_height * ratio)
image = image.resize((new_width, new_height), interpolation)
# Create a new image with the desired size and paste the resized image onto it
new_image = Image.new("RGB", (size, size))
new_image.paste(image, ((size - new_width) // 2, (size - new_height) // 2))
return new_image, ratio, (size - new_width) // 2, (size - new_height) // 2
def draw(images, labels, boxes, scores, ratios, paddings, thrh=0.4):
result_images = []
for i, im in enumerate(images):
draw = ImageDraw.Draw(im)
scr = scores[i]
lab = labels[i][scr > thrh]
box = boxes[i][scr > thrh]
scr = scr[scr > thrh]
ratio = ratios[i]
pad_w, pad_h = paddings[i]
for lbl, bb in zip(lab, box):
# Adjust bounding boxes according to the resizing and padding
bb = [
(bb[0] - pad_w) / ratio,
(bb[1] - pad_h) / ratio,
(bb[2] - pad_w) / ratio,
(bb[3] - pad_h) / ratio,
]
draw.rectangle(bb, outline="red")
draw.text((bb[0], bb[1]), text=str(lbl), fill="blue")
result_images.append(im)
return result_images
def process_image(sess, im_pil):
# Resize image while preserving aspect ratio
resized_im_pil, ratio, pad_w, pad_h = resize_with_aspect_ratio(im_pil, 640)
orig_size = torch.tensor([[resized_im_pil.size[1], resized_im_pil.size[0]]])
transforms = T.Compose(
[
T.ToTensor(),
]
)
im_data = transforms(resized_im_pil).unsqueeze(0)
output = sess.run(
output_names=None,
input_feed={"images": im_data.numpy(), "orig_target_sizes": orig_size.numpy()},
)
labels, boxes, scores = output
result_images = draw([im_pil], labels, boxes, scores, [ratio], [(pad_w, pad_h)])
result_images[0].save("onnx_result.jpg")
print("Image processing complete. Result saved as 'result.jpg'.")
def process_video(sess, video_path):
cap = cv2.VideoCapture(video_path)
# Get video properties
fps = cap.get(cv2.CAP_PROP_FPS)
orig_w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
orig_h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Define the codec and create VideoWriter object
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
out = cv2.VideoWriter("onnx_result.mp4", fourcc, fps, (orig_w, orig_h))
frame_count = 0
print("Processing video frames...")
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Convert frame to PIL image
frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
# Resize frame while preserving aspect ratio
resized_frame_pil, ratio, pad_w, pad_h = resize_with_aspect_ratio(frame_pil, 640)
orig_size = torch.tensor([[resized_frame_pil.size[1], resized_frame_pil.size[0]]])
transforms = T.Compose(
[
T.ToTensor(),
]
)
im_data = transforms(resized_frame_pil).unsqueeze(0)
output = sess.run(
output_names=None,
input_feed={"images": im_data.numpy(), "orig_target_sizes": orig_size.numpy()},
)
labels, boxes, scores = output
# Draw detections on the original frame
result_images = draw([frame_pil], labels, boxes, scores, [ratio], [(pad_w, pad_h)])
frame_with_detections = result_images[0]
# Convert back to OpenCV image
frame = cv2.cvtColor(np.array(frame_with_detections), cv2.COLOR_RGB2BGR)
# Write the frame
out.write(frame)
frame_count += 1
if frame_count % 10 == 0:
print(f"Processed {frame_count} frames...")
cap.release()
out.release()
print("Video processing complete. Result saved as 'result.mp4'.")
def main(args):
"""Main function."""
# Load the ONNX model
sess = ort.InferenceSession(args.onnx)
print(f"Using device: {ort.get_device()}")
input_path = args.input
try:
# Try to open the input as an image
im_pil = Image.open(input_path).convert("RGB")
process_image(sess, im_pil)
except IOError:
# Not an image, process as video
process_video(sess, input_path)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--onnx", type=str, required=True, help="Path to the ONNX model file.")
parser.add_argument(
"--input", type=str, required=True, help="Path to the input image or video file."
)
args = parser.parse_args()
main(args)