Spaces:
Configuration error
Configuration error
Downloader
An easy-to-use, unified tool for downloading and managing AI datasets and models.
Datasets
Supported Catalogs & File Types
Source | Info |
---|---|
TensorFlow Datasets | https://www.tensorflow.org/datasets |
Torchvision | https://pytorch.org/vision/stable/datasets.html |
Hugging Face | https://huggingface.co/docs/datasets/index |
Generic Web URL | Publicly downloadable files: .zip , .gz , .bz2 , .txt , .csv , .png , .jpg , etc. |
Usage
Dataset catalog example:
from downloader.datasets import DataDownloader
downloader = DataDownloader('tf_flowers', dataset_dir='/home/user/datasets', catalog='tensorflow_datasets')
downloader.download(split='train')
URL example:
from downloader.datasets import DataDownloader
downloader = DataDownloader('my_dataset', dataset_dir='/home/user/datasets', url='http://<domain>/<filename>.zip')
downloader.download()
Models
Supported Model Hubs
Source | Info |
---|---|
TensorFlow Hub | https://www.tensorflow.org/hub |
Torchvision | https://pytorch.org/vision/stable/models.html |
Hugging Face | https://huggingface.co/models (AutoModelForSequenceClassification or TFBertModel types) |
Usage
Example:
from downloader.models import ModelDownloader
# Hugging Face
downloader = ModelDownloader('bert-large-uncased', hub='hugging_face', num_labels=2)
downloader.download()
# Torchvision
downloader = ModelDownloader('resnet34', hub='torchvision')
downloader.download()
Build and Install
To install the downloader, follow The setup instructions for Intel Transfer Learning Tool. The downloader is currently packaged alongside the Intel Transfer Learning Tool and uses its requirements.txt files, but the tools can be separated at some future time. The downloader's dependencies are tracked in requirements.txt.
Testing
With an activated environment that has the dependencies for the downloader and pytest
in it, run this command from
the root repository directory:
py.test -s downloader/tests