Spaces:
Sleeping
Sleeping
File size: 7,280 Bytes
733fcd8 085c988 4bef0fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import streamlit as st
from PIL import Image
from model.classifier import get_model, predict
from model.search_script import search_for_recipes
import streamlit.components.v1 as components
import time
import base64
from utils.layout import render_layout
@st.cache_resource
def load_model():
return get_model()
def classification_and_recommendation_page():
st.markdown("## πΌοΈ Task A: Image Classification + π½οΈ Recipe Recommendation")
st.markdown("""
<div class="about-box">
Upload one or more food images. This module classifies each image into
<b>Onion, Pear, Strawberry, or Tomato</b> using EfficientNet-B0, and then recommends recipes
based on the combined classification results.
</div>
""", unsafe_allow_html=True)
model = load_model()
# --- Upload and classify ---
uploaded_files = st.file_uploader("π€ Upload images (JPG/PNG)", type=["jpg", "jpeg", "png"], accept_multiple_files=True)
if "uploaded_images" not in st.session_state:
st.session_state.uploaded_images = []
if "image_tags" not in st.session_state:
st.session_state.image_tags = {}
if uploaded_files:
for img_file in uploaded_files:
if img_file.name not in [img.name for img in st.session_state.uploaded_images]:
img = Image.open(img_file).convert("RGB")
label, _ = predict(img, model)
st.session_state.uploaded_images.append(img_file)
st.session_state.image_tags[img_file.name] = label
# --- Show grid of classified images ---
if st.session_state.uploaded_images:
html = """
<style>
.image-grid { display: flex; flex-wrap: wrap; gap: 12px; margin-top: 10px; }
.image-card {
width: 140px; height: 180px;
border: 1px solid #ccc; border-radius: 10px;
overflow: hidden; text-align: center;
font-size: 13px; position: relative;
background: #fdfdfd; box-shadow: 0 1px 4px rgba(0,0,0,0.08);
}
.image-card img {
max-width: 100%; max-height: 110px;
object-fit: contain; margin-top: 5px;
}
.remove-btn {
position: absolute; top: 2px; right: 6px;
color: #d33; background: #fff;
border: none; cursor: pointer; font-size: 16px;
}
</style>
<div class="image-grid">
"""
for img in st.session_state.uploaded_images:
label = st.session_state.image_tags.get(img.name, "unknown")
img_b64 = base64.b64encode(img.getvalue()).decode()
html += f"""
<div class="image-card">
<img src="data:image/png;base64,{img_b64}" />
<div><b>{label.upper()}</b></div>
<div style="color:gray; font-size:11px;">{img.name}</div>
</div>
"""
html += "</div>"
grid_rows = ((len(st.session_state.uploaded_images) - 1) // 5 + 1)
components.html(html, height=200 * grid_rows + 20, scrolling=True)
# --- Recipe Search ---
st.markdown("---")
st.markdown("## π Recipe Recommendation")
if 'search_system' not in st.session_state:
with st.spinner("Initializing recipe search system"):
st.session_state.search_system = search_for_recipes()
search_system = st.session_state.search_system
if not search_system.is_ready:
st.error("System not ready. Please check data files and try again.")
return
unique_tags = list(set(st.session_state.image_tags.values()))
default_query = " ".join(unique_tags)
query = st.text_input(
"Search for recipes:",
value=default_query,
placeholder="e.g., 'onion tomato pasta', 'strawberry dessert', etc."
)
col1, col2 = st.columns(2)
with col1:
num_results = st.slider("Number of results", 1, 15, 5)
with col2:
min_rating = st.slider("Minimum rating", 1.0, 5.0, 3.0, 0.1)
if st.button("π Search Recipes") and query:
with st.spinner(f"Searching for '{query}'..."):
results = search_system.search_recipes(query, num_results, min_rating)
if results:
st.markdown(f"### Top {len(results)} recipe recommendations for: *'{query}'*")
st.markdown("<hr>", unsafe_allow_html=True)
for i, recipe in enumerate(results, 1):
steps_html = "".join([f"<li>{step.strip().capitalize()}</li>" for step in recipe.get("steps", [])])
description = recipe.get("description", "").strip().capitalize()
html_code = f"""
<div style="margin: 8px 0; padding: 8px; border-radius: 12px; background-color: #fdfdfd;
box-shadow: 0 2px 8px rgba(0,0,0,0.06); font-family: Arial, sans-serif;
border: 1px solid #e0e0e0;">
<div style="font-size: 18px; font-weight: bold; color: #333; margin-bottom: 8px;">
{i}. {recipe['name']}
</div>
<div style="margin: 4px 0 12px 0; font-size: 14px; color: #555;">
<b>{recipe['minutes']} min</b> |
<b>{recipe['n_steps']} steps</b> |
<b>{recipe['avg_rating']:.1f}/5.0</b>
<span style="font-size: 12px; color: #999;">({recipe['num_ratings']} ratings)</span>
</div>
<div style="margin-bottom: 8px; font-size: 14px;">
<b>Match Score:</b>
<span style="color: #007acc; font-weight: bold;">{recipe['similarity_score']:.1%}</span>
<span style="font-size: 12px; color: #888;">(query match)</span>
</div>
<div style="margin-bottom: 8px;">
<b>Tags:</b><br>
<div style="margin-top: 8px;">
{" ".join([f"<span style='background:#eee;padding:4px 8px;border-radius:6px;margin:2px;display:inline-block;font-size:12px'>{tag}</span>" for tag in recipe['tags']])}
</div>
</div>
<div style="margin-bottom: 8px;">
<b>Ingredients:</b><br>
<span style="font-size: 13px; color: #444; display: block;">
{', '.join(recipe['ingredients'][:8])}{'...' if len(recipe['ingredients']) > 8 else ''}
</span>
</div>
{f"<div style='margin-top: 10px; font-size: 13px; color: #333;'><b>Description:</b><br><span>{description}</span></div>" if description else ""}
{f"<div style='margin-top: 10px; font-size: 13px;'><b>Steps:</b><ol style='margin: 6px 0 0 18px; padding: 0;'>{steps_html}</ol></div>" if steps_html else ""}
</div>
"""
components.html(html_code, height=340, scrolling=True)
else:
st.warning(f"No recipes found for '{query}' with a minimum rating of {min_rating}/5.0.")
render_layout(classification_and_recommendation_page)
|