File size: 9,394 Bytes
733fcd8
085c988
b274faf
085c988
 
 
b274faf
085c988
 
b274faf
 
 
 
 
 
 
 
 
 
 
 
 
 
085c988
 
 
 
b274faf
 
 
 
 
 
085c988
b274faf
085c988
18eb171
 
b274faf
085c988
b274faf
18eb171
b274faf
 
 
 
 
 
 
085c988
 
b274faf
 
085c988
 
 
 
 
 
 
 
b274faf
 
085c988
 
 
 
 
b274faf
 
 
 
 
 
 
 
 
085c988
 
b274faf
085c988
b274faf
 
 
 
 
085c988
 
 
 
 
b274faf
085c988
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b274faf
 
085c988
b274faf
085c988
 
 
b274faf
085c988
 
 
 
 
 
b274faf
085c988
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import streamlit as st
from PIL import Image
from model.classifier import get_model, predict, get_model_by_name
from model.search_script import search_for_recipes
import streamlit.components.v1 as components
import base64
import config as config
from utils.layout import render_layout

MODEL_PATH_MAP = {
    "Onion": config.MODEL_PATH_ONION,
    "Pear": config.MODEL_PATH_PEAR,
    "Strawberry": config.MODEL_PATH_STRAWBERRY,
    "Tomato": config.MODEL_PATH_TOMATO
}

VARIATION_CLASS_MAP = {
    "Onion": ['halved', 'sliced', 'whole'],
    "Strawberry": ['Hulled', 'sliced', 'whole'],
    "Tomato": ['diced', 'vines', 'whole'],
    "Pear": ['halved', 'sliced', 'whole']
}

@st.cache_resource
def load_model():
    return get_model()

@st.cache_resource
def load_model_variation(product_name):
    model_path = MODEL_PATH_MAP[product_name]
    num_classes = len(VARIATION_CLASS_MAP[product_name])
    return get_model_by_name(model_path, num_classes=num_classes)

def classification_and_recommendation_page():
    st.markdown("## 🍽️ Recipe Recommendation System")
    st.markdown("""
    <div class="about-box">
    <b>Recipe Recommendation Guide</b><br><br>

    Upload one or more food images. This module classifies each image into 
    <b>Onion, Pear, Strawberry, or Tomato</b> using <b>EfficientNet-B0</b>, and recommends recipes
    based on the combined classification results, using a fine-tuned BERT model.<br><br>

    <b>Steps:</b><br>
    1️⃣ Upload images (single or multiple) of produce, or directly add tags for recipe search.<br>
    2️⃣ Once uploaded, the corresponding produce tag will be automatically added to the search.<br>
    3️⃣ Use the sliders to choose the number of results and minimum recipe rating.<br>
    4️⃣ Click <b>"Search Recipe"</b> to view personalized recommendations.
    </div></br>                       
    """, unsafe_allow_html=True)



    model = load_model()

    uploaded_files = st.file_uploader("📤 Upload images (JPG/PNG)", type=["jpg", "jpeg", "png"], accept_multiple_files=True)

    if "uploaded_images" not in st.session_state:
        st.session_state.uploaded_images = []
    if "image_tags" not in st.session_state:
        st.session_state.image_tags = {}
    if "image_variations" not in st.session_state:
        st.session_state.image_variations = {}

    if uploaded_files:
        for img_file in uploaded_files:
            if img_file.name not in [img.name for img in st.session_state.uploaded_images]:
                img = Image.open(img_file).convert("RGB")
                label, main_class_prob = predict(img, model)

                variation = None
                if label in VARIATION_CLASS_MAP:
                    variation_model = load_model_variation(label)
                    class_labels = VARIATION_CLASS_MAP[label]
                    variation_label, var_conf = predict(img, variation_model, class_labels=class_labels)
                    variation = f"{variation_label} ({var_conf*main_class_prob* 100:.1f}%)"

                st.session_state.uploaded_images.append(img_file)
                st.session_state.image_tags[img_file.name] = label
                st.session_state.image_variations[img_file.name] = variation

    current_file_names = [f.name for f in uploaded_files] if uploaded_files else []
    st.session_state.uploaded_images = [f for f in st.session_state.uploaded_images if f.name in current_file_names]
    st.session_state.image_tags = {k: v for k, v in st.session_state.image_tags.items() if k in current_file_names}
    st.session_state.image_variations = {k: v for k, v in st.session_state.image_variations.items() if k in current_file_names}
    
    if st.session_state.uploaded_images:
        html = """
        <style>
        .image-grid { display: flex; flex-wrap: wrap; gap: 12px; margin-top: 10px; }
        .image-card {
            width: 140px; height: 200px;
            border: 1px solid #ccc; border-radius: 10px;
            overflow: hidden; text-align: center;
            font-size: 13px; position: relative;
            background: #fdfdfd; box-shadow: 0 1px 4px rgba(0,0,0,0.08);
        }
        .image-card img {
            max-width: 100%; max-height: 110px;
            object-fit: contain; margin-top: 5px;
        }
        </style>
        <div class="image-grid">
        """

        for img in st.session_state.uploaded_images:
            label = st.session_state.image_tags.get(img.name, "unknown")
            variation = st.session_state.image_variations.get(img.name, "")
            combined_label = f"{label.upper()} </br> {variation}" if variation else label.upper()
            img_b64 = base64.b64encode(img.getvalue()).decode()

            html += f"""
            <div class="image-card">
                <img src="data:image/png;base64,{img_b64}" />
                <div style="margin-top: 5px; font-weight: bold; font-size: 13px;">{combined_label}</div>
                <div style="color:gray; font-size:11px;">{img.name}</div>
            </div>
            """

        html += "</div>"
        grid_rows = ((len(st.session_state.uploaded_images) - 1) // 5 + 1)
        components.html(html, height=200 * grid_rows + 40, scrolling=True)

    st.markdown("---")
    st.markdown("## 🔍 Recipe Recommendation")

    if 'search_system' not in st.session_state:
        with st.spinner("Initializing recipe search system"):
            st.session_state.search_system = search_for_recipes()

    search_system = st.session_state.search_system

    if not search_system.is_ready:
        st.error("System not ready. Please check data files and try again.")
        return

    unique_tags = list(set(st.session_state.image_tags.values()))
    default_query = " ".join(unique_tags)

    query = st.text_input(
        "Search for recipes:",
        value=default_query,
        placeholder="e.g., 'onion tomato pasta', 'strawberry dessert', etc."
    )

    col1, col2 = st.columns(2)
    with col1:
        num_results = st.slider("Number of results", 1, 15, 5)
    with col2:
        min_rating = st.slider("Minimum rating", 1.0, 5.0, 3.0, 0.1)

    if st.button("🔍 Search Recipes") and query:
        with st.spinner(f"Searching for '{query}'..."):
            results = search_system.search_recipes(query, num_results, min_rating)

        if results:
            st.markdown(f"### Top {len(results)} recipe recommendations for: *'{query}'*")
            st.markdown("<hr>", unsafe_allow_html=True)

            for i, recipe in enumerate(results, 1):
                steps_html = "".join([f"<li>{step.strip().capitalize()}</li>" for step in recipe.get("steps", [])])
                description = recipe.get("description", "").strip().capitalize()

                html_code = f"""
                <div style="margin: 8px 0; padding: 8px; border-radius: 12px; background-color: #fdfdfd; 
                            box-shadow: 0 2px 8px rgba(0,0,0,0.06); font-family: Arial, sans-serif; 
                            border: 1px solid #e0e0e0;">
                    <div style="font-size: 18px; font-weight: bold; color: #333; margin-bottom: 8px;">
                        {i}. {recipe['name']}
                    </div>
                    <div style="margin: 4px 0 12px 0; font-size: 14px; color: #555;">
                        <b>{recipe['minutes']} min</b> &nbsp;&nbsp;|&nbsp;&nbsp;
                        <b>{recipe['n_steps']} steps</b> &nbsp;&nbsp;|&nbsp;&nbsp;
                        <b>{recipe['avg_rating']:.1f}/5.0</b>
                        <span style="font-size: 12px; color: #999;">({recipe['num_ratings']} ratings)</span>
                    </div>
                    <div style="margin-bottom: 8px; font-size: 14px;">
                        <b>Match Score:</b> 
                        <span style="color: #007acc; font-weight: bold;">{recipe['similarity_score']:.1%}</span>
                        <span style="font-size: 12px; color: #888;">(query match)</span>
                    </div>
                    <div style="margin-bottom: 8px;">
                        <b>Tags:</b><br>
                        <div style="margin-top: 8px;">
                            {" ".join([f"<span style='background:#eee;padding:4px 8px;border-radius:6px;margin:2px;display:inline-block;font-size:12px'>{tag}</span>" for tag in recipe['tags']])}
                        </div>
                    </div>
                    <div style="margin-bottom: 8px;">
                        <b>Ingredients:</b><br>
                        <span style="font-size: 13px; color: #444; display: block;">
                            {', '.join(recipe['ingredients'][:8])}{'...' if len(recipe['ingredients']) > 8 else ''}
                        </span>
                    </div>
                    {f"<div style='margin-top: 10px; font-size: 13px; color: #333;'><b>Description:</b><br><span>{description}</span></div>" if description else ""}
                    {f"<div style='margin-top: 10px; font-size: 13px;'><b>Steps:</b><ol style='margin: 6px 0 0 18px; padding: 0;'>{steps_html}</ol></div>" if steps_html else ""}
                </div>
                """
                components.html(html_code, height=340, scrolling=True)
        else:
            st.warning(f"No recipes found for '{query}' with a minimum rating of {min_rating}/5.0.")

render_layout(classification_and_recommendation_page)