Spaces:
Sleeping
Sleeping
import streamlit as st | |
from PIL import Image | |
from model.classifier import get_model, predict | |
from model.search_script import search_for_recipes | |
import streamlit.components.v1 as components | |
import time | |
import base64 | |
from utils.layout import render_layout | |
def load_model(): | |
return get_model() | |
def classification_and_recommendation_page(): | |
st.markdown("## πΌοΈ Task A: Image Classification + π½οΈ Recipe Recommendation") | |
st.markdown(""" | |
<div class="about-box"> | |
Upload one or more food images. This module classifies each image into | |
<b>Onion, Pear, Strawberry, or Tomato</b> using EfficientNet-B0, and then recommends recipes | |
based on the combined classification results. | |
</div> | |
""", unsafe_allow_html=True) | |
model = load_model() | |
# --- Upload and classify --- | |
uploaded_files = st.file_uploader("π€ Upload images (JPG/PNG)", type=["jpg", "jpeg", "png"], accept_multiple_files=True) | |
if "uploaded_images" not in st.session_state: | |
st.session_state.uploaded_images = [] | |
if "image_tags" not in st.session_state: | |
st.session_state.image_tags = {} | |
if uploaded_files: | |
for img_file in uploaded_files: | |
if img_file.name not in [img.name for img in st.session_state.uploaded_images]: | |
img = Image.open(img_file).convert("RGB") | |
label, _ = predict(img, model) | |
st.session_state.uploaded_images.append(img_file) | |
st.session_state.image_tags[img_file.name] = label | |
# --- Show grid of classified images --- | |
if st.session_state.uploaded_images: | |
html = """ | |
<style> | |
.image-grid { display: flex; flex-wrap: wrap; gap: 12px; margin-top: 10px; } | |
.image-card { | |
width: 140px; height: 180px; | |
border: 1px solid #ccc; border-radius: 10px; | |
overflow: hidden; text-align: center; | |
font-size: 13px; position: relative; | |
background: #fdfdfd; box-shadow: 0 1px 4px rgba(0,0,0,0.08); | |
} | |
.image-card img { | |
max-width: 100%; max-height: 110px; | |
object-fit: contain; margin-top: 5px; | |
} | |
.remove-btn { | |
position: absolute; top: 2px; right: 6px; | |
color: #d33; background: #fff; | |
border: none; cursor: pointer; font-size: 16px; | |
} | |
</style> | |
<div class="image-grid"> | |
""" | |
for img in st.session_state.uploaded_images: | |
label = st.session_state.image_tags.get(img.name, "unknown") | |
img_b64 = base64.b64encode(img.getvalue()).decode() | |
html += f""" | |
<div class="image-card"> | |
<img src="data:image/png;base64,{img_b64}" /> | |
<div><b>{label.upper()}</b></div> | |
<div style="color:gray; font-size:11px;">{img.name}</div> | |
</div> | |
""" | |
html += "</div>" | |
grid_rows = ((len(st.session_state.uploaded_images) - 1) // 5 + 1) | |
components.html(html, height=200 * grid_rows + 20, scrolling=True) | |
# --- Recipe Search --- | |
st.markdown("---") | |
st.markdown("## π Recipe Recommendation") | |
if 'search_system' not in st.session_state: | |
with st.spinner("Initializing recipe search system"): | |
st.session_state.search_system = search_for_recipes() | |
search_system = st.session_state.search_system | |
if not search_system.is_ready: | |
st.error("System not ready. Please check data files and try again.") | |
return | |
unique_tags = list(set(st.session_state.image_tags.values())) | |
default_query = " ".join(unique_tags) | |
query = st.text_input( | |
"Search for recipes:", | |
value=default_query, | |
placeholder="e.g., 'onion tomato pasta', 'strawberry dessert', etc." | |
) | |
col1, col2 = st.columns(2) | |
with col1: | |
num_results = st.slider("Number of results", 1, 15, 5) | |
with col2: | |
min_rating = st.slider("Minimum rating", 1.0, 5.0, 3.0, 0.1) | |
if st.button("π Search Recipes") and query: | |
with st.spinner(f"Searching for '{query}'..."): | |
results = search_system.search_recipes(query, num_results, min_rating) | |
if results: | |
st.markdown(f"### Top {len(results)} recipe recommendations for: *'{query}'*") | |
st.markdown("<hr>", unsafe_allow_html=True) | |
for i, recipe in enumerate(results, 1): | |
steps_html = "".join([f"<li>{step.strip().capitalize()}</li>" for step in recipe.get("steps", [])]) | |
description = recipe.get("description", "").strip().capitalize() | |
html_code = f""" | |
<div style="margin: 8px 0; padding: 8px; border-radius: 12px; background-color: #fdfdfd; | |
box-shadow: 0 2px 8px rgba(0,0,0,0.06); font-family: Arial, sans-serif; | |
border: 1px solid #e0e0e0;"> | |
<div style="font-size: 18px; font-weight: bold; color: #333; margin-bottom: 8px;"> | |
{i}. {recipe['name']} | |
</div> | |
<div style="margin: 4px 0 12px 0; font-size: 14px; color: #555;"> | |
<b>{recipe['minutes']} min</b> | | |
<b>{recipe['n_steps']} steps</b> | | |
<b>{recipe['avg_rating']:.1f}/5.0</b> | |
<span style="font-size: 12px; color: #999;">({recipe['num_ratings']} ratings)</span> | |
</div> | |
<div style="margin-bottom: 8px; font-size: 14px;"> | |
<b>Match Score:</b> | |
<span style="color: #007acc; font-weight: bold;">{recipe['similarity_score']:.1%}</span> | |
<span style="font-size: 12px; color: #888;">(query match)</span> | |
</div> | |
<div style="margin-bottom: 8px;"> | |
<b>Tags:</b><br> | |
<div style="margin-top: 8px;"> | |
{" ".join([f"<span style='background:#eee;padding:4px 8px;border-radius:6px;margin:2px;display:inline-block;font-size:12px'>{tag}</span>" for tag in recipe['tags']])} | |
</div> | |
</div> | |
<div style="margin-bottom: 8px;"> | |
<b>Ingredients:</b><br> | |
<span style="font-size: 13px; color: #444; display: block;"> | |
{', '.join(recipe['ingredients'][:8])}{'...' if len(recipe['ingredients']) > 8 else ''} | |
</span> | |
</div> | |
{f"<div style='margin-top: 10px; font-size: 13px; color: #333;'><b>Description:</b><br><span>{description}</span></div>" if description else ""} | |
{f"<div style='margin-top: 10px; font-size: 13px;'><b>Steps:</b><ol style='margin: 6px 0 0 18px; padding: 0;'>{steps_html}</ol></div>" if steps_html else ""} | |
</div> | |
""" | |
components.html(html_code, height=340, scrolling=True) | |
else: | |
st.warning(f"No recipes found for '{query}' with a minimum rating of {min_rating}/5.0.") | |
render_layout(classification_and_recommendation_page) | |