Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -98,6 +98,7 @@
|
|
98 |
# demo.launch()
|
99 |
|
100 |
import re
|
|
|
101 |
import gradio as gr
|
102 |
from transformers import AutoProcessor, AutoModelForImageTextToText
|
103 |
from PIL import Image
|
@@ -106,6 +107,27 @@ from PIL import Image
|
|
106 |
processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview")
|
107 |
model = AutoModelForImageTextToText.from_pretrained("ds4sd/SmolDocling-256M-preview")
|
108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
def smoldocling_readimage(image, prompt_text):
|
110 |
messages = [
|
111 |
{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt_text}]}
|
@@ -115,17 +137,11 @@ def smoldocling_readimage(image, prompt_text):
|
|
115 |
outputs = model.generate(**inputs, max_new_tokens=1024)
|
116 |
prompt_length = inputs.input_ids.shape[1]
|
117 |
generated = outputs[:, prompt_length:]
|
118 |
-
|
119 |
-
|
120 |
-
# Remove all tags like <tag> and </tag>
|
121 |
-
text_without_tags = re.sub(r'<.*?>', '', raw_result)
|
122 |
-
|
123 |
-
# Extract all numbers (integers or decimals)
|
124 |
-
numbers = re.findall(r'\d+\.\d+|\d+', text_without_tags)
|
125 |
|
126 |
-
#
|
127 |
-
|
128 |
-
return
|
129 |
|
130 |
# Gradio UI
|
131 |
demo = gr.Interface(
|
@@ -134,7 +150,7 @@ demo = gr.Interface(
|
|
134 |
gr.Image(type="pil", label="Upload Image"),
|
135 |
gr.Textbox(lines=1, placeholder="Enter prompt (e.g. Convert to docling)", label="Prompt"),
|
136 |
],
|
137 |
-
outputs="
|
138 |
title="SmolDocling Web App",
|
139 |
description="Upload a document image and convert it to structured docling format."
|
140 |
)
|
|
|
98 |
# demo.launch()
|
99 |
|
100 |
import re
|
101 |
+
import json
|
102 |
import gradio as gr
|
103 |
from transformers import AutoProcessor, AutoModelForImageTextToText
|
104 |
from PIL import Image
|
|
|
107 |
processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview")
|
108 |
model = AutoModelForImageTextToText.from_pretrained("ds4sd/SmolDocling-256M-preview")
|
109 |
|
110 |
+
def parse_docling_to_json(docling_text):
|
111 |
+
# Remove unwanted tags like <otsl>, </otsl>, <loc_...>
|
112 |
+
cleaned = re.sub(r"</?otsl>|<loc_[^>]+>", "", docling_text)
|
113 |
+
|
114 |
+
# Split by line break <nl>
|
115 |
+
lines = cleaned.split("<nl>")
|
116 |
+
table = []
|
117 |
+
for line in lines:
|
118 |
+
if not line.strip():
|
119 |
+
continue
|
120 |
+
# Extract all <fcel> values
|
121 |
+
cells = re.findall(r"<fcel>([^<]+)", line)
|
122 |
+
# Convert to floats if possible
|
123 |
+
try:
|
124 |
+
row = [float(cell) for cell in cells]
|
125 |
+
except ValueError:
|
126 |
+
# If conversion fails, keep as string
|
127 |
+
row = cells
|
128 |
+
table.append(row)
|
129 |
+
return json.dumps(table, indent=2)
|
130 |
+
|
131 |
def smoldocling_readimage(image, prompt_text):
|
132 |
messages = [
|
133 |
{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt_text}]}
|
|
|
137 |
outputs = model.generate(**inputs, max_new_tokens=1024)
|
138 |
prompt_length = inputs.input_ids.shape[1]
|
139 |
generated = outputs[:, prompt_length:]
|
140 |
+
result = processor.batch_decode(generated, skip_special_tokens=False)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
+
# Parse raw docling output to JSON
|
143 |
+
json_output = parse_docling_to_json(result)
|
144 |
+
return f"<pre>{json_output}</pre>"
|
145 |
|
146 |
# Gradio UI
|
147 |
demo = gr.Interface(
|
|
|
150 |
gr.Image(type="pil", label="Upload Image"),
|
151 |
gr.Textbox(lines=1, placeholder="Enter prompt (e.g. Convert to docling)", label="Prompt"),
|
152 |
],
|
153 |
+
outputs="html",
|
154 |
title="SmolDocling Web App",
|
155 |
description="Upload a document image and convert it to structured docling format."
|
156 |
)
|