Spaces:
Paused
Paused
import gradio as gr | |
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate | |
from llama_index.llms.huggingface import HuggingFaceInferenceAPI | |
from dotenv import load_dotenv | |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
from llama_index.core import Settings | |
import os | |
import tempfile | |
# Load environment variables | |
load_dotenv() | |
# Configure the Llama index settings | |
Settings.llm = HuggingFaceInferenceAPI( | |
model_name="google/gemma-1.1-7b-it", | |
tokenizer_name="google/gemma-1.1-7b-it", | |
context_window=3000, | |
token=os.getenv("HF_TOKEN"), | |
max_new_tokens=512, | |
generate_kwargs={"temperature": 0.1}, | |
) | |
Settings.embed_model = HuggingFaceEmbedding( | |
model_name="BAAI/bge-small-en-v1.5" | |
) | |
# Define the directory for persistent storage and data | |
PERSIST_DIR = "./db" | |
DATA_DIR = "data" | |
# Ensure data directory exists | |
os.makedirs(DATA_DIR, exist_ok=True) | |
os.makedirs(PERSIST_DIR, exist_ok=True) | |
def data_ingestion(): | |
documents = SimpleDirectoryReader(DATA_DIR).load_data() | |
storage_context = StorageContext.from_defaults() | |
index = VectorStoreIndex.from_documents(documents) | |
index.storage_context.persist(persist_dir=PERSIST_DIR) | |
def handle_query(query): | |
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) | |
index = load_index_from_storage(storage_context) | |
chat_text_qa_msgs = [ | |
( | |
"user", | |
"""You are a Q&A assistant named EazyPeazy, For all other inquiries, your main goal is to provide answers as accurately as possible, based on the instructions and context you have been given. If a question does not match the provided context or is outside the scope of the document, kindly advise the user to ask questions within the context of the document. | |
Context: | |
{context_str} | |
Question: | |
{query_str} | |
""" | |
) | |
] | |
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) | |
query_engine = index.as_query_engine(text_qa_template=text_qa_template) | |
answer = query_engine.query(query) | |
if hasattr(answer, 'response'): | |
return answer.response | |
elif isinstance(answer, dict) and 'response' in answer: | |
return answer['response'] | |
else: | |
return "Sorry, I couldn't find an answer." | |
def process_file(file): | |
if file is None: | |
return "Please upload a PDF file." | |
temp_dir = tempfile.mkdtemp() | |
temp_path = os.path.join(temp_dir, "uploaded.pdf") | |
with open(temp_path, "wb") as f: | |
f.write(file.read()) | |
# Copy the file to the DATA_DIR | |
os.makedirs(DATA_DIR, exist_ok=True) | |
dest_path = os.path.join(DATA_DIR, "saved_pdf.pdf") | |
os.replace(temp_path, dest_path) | |
# Process the uploaded PDF | |
data_ingestion() | |
return "PDF processed successfully. You can now ask questions about its content." | |
def chatbot(message, history): | |
response = handle_query(message) | |
history.append((message, response)) | |
return history, "" | |
# Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# (PDF) Information and Inference🗞️") | |
gr.Markdown("Retrieval-Augmented Generation") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
file_output = gr.Textbox(label="Upload Status") | |
upload_button = gr.UploadButton("Upload PDF", file_types=[".pdf"]) | |
upload_button.upload(process_file, upload_button, file_output) | |
with gr.Column(scale=2): | |
chatbot = gr.Chatbot( | |
[], | |
elem_id="chatbot", | |
bubble_full_width=False, | |
) | |
msg = gr.Textbox(label="Ask me anything about the content of the PDF:") | |
clear = gr.Button("Clear") | |
msg.submit(chatbot, [msg, chatbot], [chatbot, msg]) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
if __name__ == "__main__": | |
demo.launch() |