Spaces:
Sleeping
Sleeping
File size: 19,763 Bytes
9dc639f 74221f2 9dc639f 936bed3 1eb0002 293661c 936bed3 293661c 9dc639f 936bed3 55d7984 1eb0002 293661c 53b33ac df1f812 53b33ac fc48f50 9583bff 6c4ab66 9583bff db87ae8 293661c db87ae8 78bd826 df1f812 936bed3 df1f812 0ef5d8a df1f812 0ef5d8a 1fc8ba9 df1f812 90437f0 0dbe352 936bed3 c947e4c 1eb0002 936bed3 726773c e8182c5 864c041 936bed3 df1f812 74221f2 936bed3 1eb0002 936bed3 1eb0002 74221f2 1eb0002 936bed3 1eb0002 74221f2 1eb0002 936bed3 54fafa1 1eb0002 936bed3 1eb0002 b0739e4 1eb0002 db87ae8 19fdb92 936bed3 1eb0002 936bed3 31cd36e 1eb0002 19fdb92 1eb0002 936bed3 1eb0002 fdd11a3 31cd36e 1eb0002 19fdb92 1eb0002 0aef3aa 936bed3 53b33ac 1eb0002 9724455 1eb0002 9724455 1eb0002 53b33ac df1f812 ac8126f 1eb0002 df1f812 ac8126f 1eb0002 df1f812 1eb0002 936bed3 df1f812 936bed3 0036873 936bed3 9c26203 df1f812 90437f0 936bed3 0036873 df1f812 936bed3 df1f812 936bed3 df1f812 0036873 df1f812 936bed3 b0739e4 936bed3 1eb0002 df1f812 936bed3 df1f812 936bed3 fdd11a3 c54b7aa 936bed3 19fdb92 d329916 1eb0002 936bed3 19fdb92 936bed3 1eb0002 936bed3 1eb0002 19fdb92 936bed3 1eb0002 936bed3 1eb0002 c54b7aa 936bed3 970259d 1eb0002 ae2e497 df1f812 936bed3 df1f812 1eb0002 936bed3 3c486f4 936bed3 3c486f4 936bed3 3c486f4 936bed3 df1f812 3c486f4 0dbe352 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
import os
import getpass
import spacy
import pandas as pd
import numpy as np
from typing import Optional, List, Dict, Any
import subprocess
from langchain.llms.base import LLM
from langchain.docstore.document import Document
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from smolagents import DuckDuckGoSearchTool, ManagedAgent, LiteLLMModel ,CodeAgent, HfApiModel
from pydantic import BaseModel, Field, ValidationError, validator
from mistralai import Mistral
# Import Google Gemini model
from langchain_google_genai import ChatGoogleGenerativeAI
from classification_chain import get_classification_chain
from cleaner_chain import get_cleaner_chain
from refusal_chain import get_refusal_chain
from tailor_chain import get_tailor_chain
from prompts import classification_prompt, refusal_prompt, tailor_prompt
LANGSMITH_TRACING=True
LANGSMITH_ENDPOINT="https://api.smith.langchain.com"
LANGSMITH_API_KEY=os.environ.get("LANGSMITH_API_KEY")
LANGSMITH_PROJECT=os.environ.get("LANGCHAIN_PROJECT")
# Initialize Mistral API client
mistral_api_key = os.environ.get("MISTRAL_API_KEY")
client = Mistral(api_key=mistral_api_key)
# Setup ChatGoogleGenerativeAI for Gemini
# Ensure GEMINI_API_KEY is set in your environment variables.
gemini_llm = ChatGoogleGenerativeAI(
model="gemini-1.5-pro",
temperature=0.5,
max_retries=2,
google_api_key=os.environ.get("GEMINI_API_KEY"),
# Additional parameters or safety_settings can be added here if needed
)
# web_gemini_llm = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("GEMINI_API_KEY"))
################################################################################
# Pydantic Models
################################################################################
class QueryInput(BaseModel):
query: str = Field(..., min_length=1, description="The input query string")
@validator('query')
def check_query_is_string(cls, v):
if not isinstance(v, str):
raise ValueError("Query must be a valid string")
if v.strip() == "":
raise ValueError("Query cannot be empty or just whitespace")
return v.strip()
class ModerationResult(BaseModel):
is_safe: bool = Field(..., description="Whether the content is safe")
categories: Dict[str, bool] = Field(default_factory=dict, description="Detected content categories")
original_text: str = Field(..., description="The original input text")
################################################################################
# SPACy Setup
################################################################################
def install_spacy_model():
try:
spacy.load("en_core_web_sm")
print("spaCy model 'en_core_web_sm' is already installed.")
except OSError:
print("Downloading spaCy model 'en_core_web_sm'...")
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"], check=True)
print("spaCy model 'en_core_web_sm' downloaded successfully.")
install_spacy_model()
nlp = spacy.load("en_core_web_sm")
################################################################################
# Utility Functions
################################################################################
def sanitize_message(message: Any) -> str:
"""Sanitize message input to ensure it's a valid string."""
try:
if hasattr(message, 'content'):
return str(message.content).strip()
if isinstance(message, dict) and 'content' in message:
return str(message['content']).strip()
if isinstance(message, list) and len(message) > 0:
if isinstance(message[0], dict) and 'content' in message[0]:
return str(message[0]['content']).strip()
if hasattr(message[0], 'content'):
return str(message[0].content).strip()
return str(message).strip()
except Exception as e:
raise RuntimeError(f"Error in sanitize function: {str(e)}")
def extract_main_topic(query: str) -> str:
"""Extracts a main topic (named entity or noun) from the user query."""
try:
query_input = QueryInput(query=query)
doc = nlp(query_input.query)
main_topic = None
# Attempt to find an entity
for ent in doc.ents:
if ent.label_ in ["ORG", "PRODUCT", "PERSON", "GPE", "TIME"]:
main_topic = ent.text
break
# If no named entity, fall back to nouns or proper nouns
if not main_topic:
for token in doc:
if token.pos_ in ["NOUN", "PROPN"]:
main_topic = token.text
break
return main_topic if main_topic else "this topic"
except Exception as e:
print(f"Error extracting main topic: {e}")
return "this topic"
def moderate_text(query: str) -> ModerationResult:
"""Uses Mistral's moderation to determine if the content is safe."""
try:
query_input = QueryInput(query=query)
response = client.classifiers.moderate_chat(
model="mistral-moderation-latest",
inputs=[{"role": "user", "content": query_input.query}]
)
is_safe = True
categories = {}
if hasattr(response, 'results') and response.results:
categories = {
"violence": response.results[0].categories.get("violence_and_threats", False),
"hate": response.results[0].categories.get("hate_and_discrimination", False),
"dangerous": response.results[0].categories.get("dangerous_and_criminal_content", False),
"selfharm": response.results[0].categories.get("selfharm", False)
}
# If any flagged category is True, then not safe
is_safe = not any(categories.values())
return ModerationResult(
is_safe=is_safe,
categories=categories,
original_text=query_input.query
)
except ValidationError as e:
raise ValueError(f"Input validation failed: {str(e)}")
except Exception as e:
raise RuntimeError(f"Moderation failed: {str(e)}")
def classify_query(query: str) -> str:
"""Classify user query into known categories using your classification chain."""
try:
query_input = QueryInput(query=query)
# Quick pattern-based approach for 'Wellness'
# wellness_keywords = ["box breathing", "meditation", "yoga", "mindfulness", "breathing exercises"]
wellness_keywords=[]
if any(keyword in query_input.query.lower() for keyword in wellness_keywords):
return "Wellness"
# Use chain for everything else
class_result = classification_chain.invoke({"query": query_input.query})
print(class_result)
# classification = class_result.get("text", "").strip()
classification=class_result
return classification if classification != "" else "OutOfScope"
except ValidationError as e:
raise ValueError(f"Classification input validation failed: {str(e)}")
except Exception as e:
raise RuntimeError(f"Classification failed: {str(e)}")
################################################################################
# Vector Store Building/Loading
################################################################################
def build_or_load_vectorstore(csv_path: str, store_dir: str) -> FAISS:
try:
if os.path.exists(store_dir):
print(f"DEBUG: Found existing FAISS store at '{store_dir}'. Loading...")
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
vectorstore = FAISS.load_local(store_dir, embeddings)
return vectorstore
else:
print(f"DEBUG: Building new store from CSV: {csv_path}")
df = pd.read_csv(csv_path)
df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
df.columns = df.columns.str.strip()
if "Answer" in df.columns:
df.rename(columns={"Answer": "Answers"}, inplace=True)
if "Question" not in df.columns and "Question " in df.columns:
df.rename(columns={"Question ": "Question"}, inplace=True)
if "Question" not in df.columns or "Answers" not in df.columns:
raise ValueError("CSV must have 'Question' and 'Answers' columns.")
docs = []
for _, row in df.iterrows():
q = str(row["Question"])
ans = str(row["Answers"])
doc = Document(page_content=ans, metadata={"question": q})
docs.append(doc)
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
vectorstore = FAISS.from_documents(docs, embedding=embeddings)
vectorstore.save_local(store_dir)
return vectorstore
except Exception as e:
raise RuntimeError(f"Error building/loading vector store: {str(e)}")
def build_rag_chain(vectorstore: FAISS) -> RetrievalQA:
"""Build RAG chain using the Gemini LLM directly without a custom class."""
try:
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
chain = RetrievalQA.from_chain_type(
llm=gemini_llm, # Directly use the ChatGoogleGenerativeAI instance
chain_type="stuff",
retriever=retriever,
return_source_documents=True
)
return chain
except Exception as e:
raise RuntimeError(f"Error building RAG chain: {str(e)}")
################################################################################
# Web Search Caching: Separate FAISS Vector Store
################################################################################
# Directory for storing cached web search results
web_search_store_dir = "faiss_websearch_store"
def build_or_load_websearch_store(store_dir: str) -> FAISS:
"""
Builds or loads a FAISS vector store for caching web search results.
Each Document will have page_content as the search result text,
and metadata={"question": <user_query>}.
"""
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
if os.path.exists(store_dir):
print(f"DEBUG: Found existing WebSearch FAISS store at '{store_dir}'. Loading...")
return FAISS.load_local(store_dir, embeddings)
else:
print(f"DEBUG: Creating a new, empty WebSearch FAISS store at '{store_dir}'...")
# Start empty
empty_store = FAISS.from_texts([""], embeddings, metadatas=[{"question": "placeholder"}])
# Remove the placeholder doc so we don't retrieve it
empty_store.index.reset()
empty_store.docstore._dict = {}
empty_store.save_local(store_dir)
return empty_store
# Initialize the web search vector store
web_search_vectorstore = build_or_load_websearch_store(web_search_store_dir)
websearch_embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
def compute_cosine_similarity(vec_a: List[float], vec_b: List[float]) -> float:
"""Compute cosine similarity between two embedding vectors."""
a = np.array(vec_a, dtype=float)
b = np.array(vec_b, dtype=float)
return float(np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b) + 1e-10))
def get_cached_websearch(query: str, threshold: float = 0.8) -> Optional[str]:
"""
Attempts to retrieve a cached web search result for a given query.
If the top retrieved document has a cosine similarity >= threshold,
returns that document's page_content. Otherwise, returns None.
"""
# Retrieve the top doc from the store
retriever = web_search_vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 1})
results = retriever.get_relevant_documents(query)
if not results:
return None
# Compare similarity with the top doc
top_doc = results[0]
query_vec = websearch_embeddings.embed_query(query)
doc_vec = websearch_embeddings.embed_query(top_doc.page_content)
similarity = compute_cosine_similarity(query_vec, doc_vec)
if similarity >= threshold:
print(f"DEBUG: Using cached web search (similarity={similarity:.2f} >= {threshold})")
return top_doc.page_content
print(f"DEBUG: Cached doc similarity={similarity:.2f} < {threshold}, not reusing.")
return None
def store_websearch_result(query: str, web_search_text: str):
"""
Embeds and stores the web search result text in the web search vector store,
keyed by the question in metadata. Then saves the store locally.
"""
if not web_search_text.strip():
return # Don't store empty results
doc = Document(page_content=web_search_text, metadata={"question": query})
web_search_vectorstore.add_documents([doc], embedding=websearch_embeddings)
web_search_vectorstore.save_local(web_search_store_dir)
def do_cached_web_search(query: str) -> str:
"""Perform a DuckDuckGo web search, but with caching via FAISS vector store."""
# 1) Check cache
cached_result = get_cached_websearch(query)
if cached_result:
return cached_result
# 2) If no suitable cached answer, do a new search
try:
print("DEBUG: Performing a new web search...")
# model = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("GEMINI_API_KEY"))
model=HfApiModel()
search_tool = DuckDuckGoSearchTool()
web_agent = CodeAgent(
tools=[search_tool],
model=model
)
managed_web_agent = ManagedAgent(
agent=web_agent,
name="web_search",
description="Runs a web search for you. Provide your query as an argument."
)
manager_agent = CodeAgent(
tools=[], # If you have additional tools for the manager, add them here
model=model,
managed_agents=[managed_web_agent]
)
new_search_result = manager_agent.run(f"Search for information about: {query}")
# 3) Store in cache for future reuse
store_websearch_result(query, new_search_result)
return str(new_search_result).strip()
except Exception as e:
print(f"Web search failed: {e}")
return ""
################################################################################
# Response Merging
################################################################################
def merge_responses(csv_answer: str, web_answer: str) -> str:
"""Merge CSV-based RAG result with web search results."""
try:
if not csv_answer and not web_answer:
return "I apologize, but I couldn't find any relevant information."
if not web_answer:
return csv_answer
if not csv_answer:
return web_answer
return f"{csv_answer}\n\nAdditional information from web search:\n{web_answer}"
except Exception as e:
print(f"Error merging responses: {e}")
return csv_answer or web_answer or "I apologize, but I couldn't process the information properly."
################################################################################
# Main Pipeline
################################################################################
def run_pipeline(query: str) -> str:
"""
Pipeline logic to:
1) Sanitize & moderate the query
2) Classify the query (OutOfScope, Wellness, Brand, etc.)
3) If safe & in scope, do RAG + ALWAYS do a cached web search
4) Merge responses and tailor final output
"""
try:
print(query)
sanitized_query = sanitize_message(query)
query_input = QueryInput(query=sanitized_query)
topic = extract_main_topic(query_input.query)
moderation_result = moderate_text(query_input.query)
# Check for unsafe content
if not moderation_result.is_safe:
return "Sorry, this query contains harmful or inappropriate content."
# Classify
classification = classify_query(moderation_result.original_text)
# If out-of-scope, refuse
if classification == "OutOfScope":
refusal_text = refusal_chain.invoke({"topic": topic,"query":query})
return tailor_chain.run({"response": refusal_text}).strip()
# Otherwise, do a RAG query and also do a web search (cached)
if classification == "Wellness":
# RAG from wellness store
rag_result = wellness_rag_chain({"query": moderation_result.original_text})
csv_answer = rag_result.get("result", "").strip() if isinstance(rag_result, dict) else str(rag_result).strip()
# Always do a (cached) web search
web_answer = do_cached_web_search(moderation_result.original_text)
# Merge CSV & Web
final_merged = merge_responses(csv_answer, web_answer)
return tailor_chain.run({"response": final_merged}).strip()
if classification == "Brand":
# RAG from brand store
rag_result = brand_rag_chain({"query": moderation_result.original_text})
csv_answer = rag_result.get("result", "").strip() if isinstance(rag_result, dict) else str(rag_result).strip()
# Always do a (cached) web search
web_answer = do_cached_web_search(moderation_result.original_text)
# Merge CSV & Web
final_merged = merge_responses(csv_answer, web_answer)
return tailor_chain.run({"response": final_merged}).strip()
# If it doesn't fall under known categories, return refusal by default.
refusal_text = refusal_chain.invoke({"topic": topic,"query":query})
return tailor_chain.run({"response": refusal_text}).strip()
except ValidationError as e:
raise ValueError(f"Input validation failed: {str(e)}")
except Exception as e:
raise RuntimeError(f"Error in run_pipeline: {str(e)}")
def run_with_chain(query: str) -> str:
"""Convenience function to run the main pipeline and handle errors gracefully."""
try:
return run_pipeline(query)
except Exception as e:
print(f"Error in run_with_chain: {str(e)}")
return "I apologize, but I encountered an error processing your request. Please try again."
################################################################################
# Chain & Vectorstore Initialization
################################################################################
# Load your classification/refusal/tailor/cleaner chains
classification_chain = get_classification_chain()
refusal_chain = get_refusal_chain()
tailor_chain = get_tailor_chain()
cleaner_chain = get_cleaner_chain()
# CSV file paths and store directories for RAG
wellness_csv = "AIChatbot.csv"
brand_csv = "BrandAI.csv"
wellness_store_dir = "faiss_wellness_store"
brand_store_dir = "faiss_brand_store"
# Build or load the vector stores
wellness_vectorstore = build_or_load_vectorstore(wellness_csv, wellness_store_dir)
brand_vectorstore = build_or_load_vectorstore(brand_csv, brand_store_dir)
# Build RAG chains
wellness_rag_chain = build_rag_chain(wellness_vectorstore)
brand_rag_chain = build_rag_chain(brand_vectorstore)
print("Pipeline initialized successfully! Ready to handle querie with caching.")
|