Spaces:
Sleeping
Sleeping
import os | |
import getpass | |
import spacy | |
import pandas as pd | |
import numpy as np | |
from typing import Optional, List, Dict, Any | |
import subprocess | |
from langchain.llms.base import LLM | |
from langchain.docstore.document import Document | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.chains import RetrievalQA | |
from smolagents import DuckDuckGoSearchTool, ManagedAgent, LiteLLMModel ,CodeAgent, HfApiModel | |
from pydantic import BaseModel, Field, ValidationError, validator | |
from mistralai import Mistral | |
# Import Google Gemini model | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from classification_chain import get_classification_chain | |
from cleaner_chain import get_cleaner_chain | |
from refusal_chain import get_refusal_chain | |
from tailor_chain import get_tailor_chain | |
from prompts import classification_prompt, refusal_prompt, tailor_prompt | |
LANGSMITH_TRACING=True | |
LANGSMITH_ENDPOINT="https://api.smith.langchain.com" | |
LANGSMITH_API_KEY=os.environ.get("LANGSMITH_API_KEY") | |
LANGSMITH_PROJECT=os.environ.get("LANGCHAIN_PROJECT") | |
# Initialize Mistral API client | |
mistral_api_key = os.environ.get("MISTRAL_API_KEY") | |
client = Mistral(api_key=mistral_api_key) | |
# Setup ChatGoogleGenerativeAI for Gemini | |
# Ensure GEMINI_API_KEY is set in your environment variables. | |
gemini_llm = ChatGoogleGenerativeAI( | |
model="gemini-1.5-pro", | |
temperature=0.5, | |
max_retries=2, | |
google_api_key=os.environ.get("GEMINI_API_KEY"), | |
# Additional parameters or safety_settings can be added here if needed | |
) | |
# web_gemini_llm = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("GEMINI_API_KEY")) | |
################################################################################ | |
# Pydantic Models | |
################################################################################ | |
class QueryInput(BaseModel): | |
query: str = Field(..., min_length=1, description="The input query string") | |
def check_query_is_string(cls, v): | |
if not isinstance(v, str): | |
raise ValueError("Query must be a valid string") | |
if v.strip() == "": | |
raise ValueError("Query cannot be empty or just whitespace") | |
return v.strip() | |
class ModerationResult(BaseModel): | |
is_safe: bool = Field(..., description="Whether the content is safe") | |
categories: Dict[str, bool] = Field(default_factory=dict, description="Detected content categories") | |
original_text: str = Field(..., description="The original input text") | |
################################################################################ | |
# SPACy Setup | |
################################################################################ | |
def install_spacy_model(): | |
try: | |
spacy.load("en_core_web_sm") | |
print("spaCy model 'en_core_web_sm' is already installed.") | |
except OSError: | |
print("Downloading spaCy model 'en_core_web_sm'...") | |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"], check=True) | |
print("spaCy model 'en_core_web_sm' downloaded successfully.") | |
install_spacy_model() | |
nlp = spacy.load("en_core_web_sm") | |
################################################################################ | |
# Utility Functions | |
################################################################################ | |
def sanitize_message(message: Any) -> str: | |
"""Sanitize message input to ensure it's a valid string.""" | |
try: | |
if hasattr(message, 'content'): | |
return str(message.content).strip() | |
if isinstance(message, dict) and 'content' in message: | |
return str(message['content']).strip() | |
if isinstance(message, list) and len(message) > 0: | |
if isinstance(message[0], dict) and 'content' in message[0]: | |
return str(message[0]['content']).strip() | |
if hasattr(message[0], 'content'): | |
return str(message[0].content).strip() | |
return str(message).strip() | |
except Exception as e: | |
raise RuntimeError(f"Error in sanitize function: {str(e)}") | |
def extract_main_topic(query: str) -> str: | |
"""Extracts a main topic (named entity or noun) from the user query.""" | |
try: | |
query_input = QueryInput(query=query) | |
doc = nlp(query_input.query) | |
main_topic = None | |
# Attempt to find an entity | |
for ent in doc.ents: | |
if ent.label_ in ["ORG", "PRODUCT", "PERSON", "GPE", "TIME"]: | |
main_topic = ent.text | |
break | |
# If no named entity, fall back to nouns or proper nouns | |
if not main_topic: | |
for token in doc: | |
if token.pos_ in ["NOUN", "PROPN"]: | |
main_topic = token.text | |
break | |
return main_topic if main_topic else "this topic" | |
except Exception as e: | |
print(f"Error extracting main topic: {e}") | |
return "this topic" | |
def moderate_text(query: str) -> ModerationResult: | |
"""Uses Mistral's moderation to determine if the content is safe.""" | |
try: | |
query_input = QueryInput(query=query) | |
response = client.classifiers.moderate_chat( | |
model="mistral-moderation-latest", | |
inputs=[{"role": "user", "content": query_input.query}] | |
) | |
is_safe = True | |
categories = {} | |
if hasattr(response, 'results') and response.results: | |
categories = { | |
"violence": response.results[0].categories.get("violence_and_threats", False), | |
"hate": response.results[0].categories.get("hate_and_discrimination", False), | |
"dangerous": response.results[0].categories.get("dangerous_and_criminal_content", False), | |
"selfharm": response.results[0].categories.get("selfharm", False) | |
} | |
# If any flagged category is True, then not safe | |
is_safe = not any(categories.values()) | |
return ModerationResult( | |
is_safe=is_safe, | |
categories=categories, | |
original_text=query_input.query | |
) | |
except ValidationError as e: | |
raise ValueError(f"Input validation failed: {str(e)}") | |
except Exception as e: | |
raise RuntimeError(f"Moderation failed: {str(e)}") | |
def classify_query(query: str) -> str: | |
"""Classify user query into known categories using your classification chain.""" | |
try: | |
query_input = QueryInput(query=query) | |
# Quick pattern-based approach for 'Wellness' | |
# wellness_keywords = ["box breathing", "meditation", "yoga", "mindfulness", "breathing exercises"] | |
wellness_keywords=[] | |
if any(keyword in query_input.query.lower() for keyword in wellness_keywords): | |
return "Wellness" | |
# Use chain for everything else | |
class_result = classification_chain.invoke({"query": query_input.query}) | |
print(class_result) | |
# classification = class_result.get("text", "").strip() | |
classification=class_result | |
return classification if classification != "" else "OutOfScope" | |
except ValidationError as e: | |
raise ValueError(f"Classification input validation failed: {str(e)}") | |
except Exception as e: | |
raise RuntimeError(f"Classification failed: {str(e)}") | |
################################################################################ | |
# Vector Store Building/Loading | |
################################################################################ | |
def build_or_load_vectorstore(csv_path: str, store_dir: str) -> FAISS: | |
try: | |
if os.path.exists(store_dir): | |
print(f"DEBUG: Found existing FAISS store at '{store_dir}'. Loading...") | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1") | |
vectorstore = FAISS.load_local(store_dir, embeddings) | |
return vectorstore | |
else: | |
print(f"DEBUG: Building new store from CSV: {csv_path}") | |
df = pd.read_csv(csv_path) | |
df = df.loc[:, ~df.columns.str.contains('^Unnamed')] | |
df.columns = df.columns.str.strip() | |
if "Answer" in df.columns: | |
df.rename(columns={"Answer": "Answers"}, inplace=True) | |
if "Question" not in df.columns and "Question " in df.columns: | |
df.rename(columns={"Question ": "Question"}, inplace=True) | |
if "Question" not in df.columns or "Answers" not in df.columns: | |
raise ValueError("CSV must have 'Question' and 'Answers' columns.") | |
docs = [] | |
for _, row in df.iterrows(): | |
q = str(row["Question"]) | |
ans = str(row["Answers"]) | |
doc = Document(page_content=ans, metadata={"question": q}) | |
docs.append(doc) | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1") | |
vectorstore = FAISS.from_documents(docs, embedding=embeddings) | |
vectorstore.save_local(store_dir) | |
return vectorstore | |
except Exception as e: | |
raise RuntimeError(f"Error building/loading vector store: {str(e)}") | |
def build_rag_chain(vectorstore: FAISS) -> RetrievalQA: | |
"""Build RAG chain using the Gemini LLM directly without a custom class.""" | |
try: | |
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3}) | |
chain = RetrievalQA.from_chain_type( | |
llm=gemini_llm, # Directly use the ChatGoogleGenerativeAI instance | |
chain_type="stuff", | |
retriever=retriever, | |
return_source_documents=True | |
) | |
return chain | |
except Exception as e: | |
raise RuntimeError(f"Error building RAG chain: {str(e)}") | |
################################################################################ | |
# Web Search Caching: Separate FAISS Vector Store | |
################################################################################ | |
# Directory for storing cached web search results | |
web_search_store_dir = "faiss_websearch_store" | |
def build_or_load_websearch_store(store_dir: str) -> FAISS: | |
""" | |
Builds or loads a FAISS vector store for caching web search results. | |
Each Document will have page_content as the search result text, | |
and metadata={"question": <user_query>}. | |
""" | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1") | |
if os.path.exists(store_dir): | |
print(f"DEBUG: Found existing WebSearch FAISS store at '{store_dir}'. Loading...") | |
return FAISS.load_local(store_dir, embeddings) | |
else: | |
print(f"DEBUG: Creating a new, empty WebSearch FAISS store at '{store_dir}'...") | |
# Start empty | |
empty_store = FAISS.from_texts([""], embeddings, metadatas=[{"question": "placeholder"}]) | |
# Remove the placeholder doc so we don't retrieve it | |
empty_store.index.reset() | |
empty_store.docstore._dict = {} | |
empty_store.save_local(store_dir) | |
return empty_store | |
# Initialize the web search vector store | |
web_search_vectorstore = build_or_load_websearch_store(web_search_store_dir) | |
websearch_embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1") | |
def compute_cosine_similarity(vec_a: List[float], vec_b: List[float]) -> float: | |
"""Compute cosine similarity between two embedding vectors.""" | |
a = np.array(vec_a, dtype=float) | |
b = np.array(vec_b, dtype=float) | |
return float(np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b) + 1e-10)) | |
def get_cached_websearch(query: str, threshold: float = 0.8) -> Optional[str]: | |
""" | |
Attempts to retrieve a cached web search result for a given query. | |
If the top retrieved document has a cosine similarity >= threshold, | |
returns that document's page_content. Otherwise, returns None. | |
""" | |
# Retrieve the top doc from the store | |
retriever = web_search_vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 1}) | |
results = retriever.get_relevant_documents(query) | |
if not results: | |
return None | |
# Compare similarity with the top doc | |
top_doc = results[0] | |
query_vec = websearch_embeddings.embed_query(query) | |
doc_vec = websearch_embeddings.embed_query(top_doc.page_content) | |
similarity = compute_cosine_similarity(query_vec, doc_vec) | |
if similarity >= threshold: | |
print(f"DEBUG: Using cached web search (similarity={similarity:.2f} >= {threshold})") | |
return top_doc.page_content | |
print(f"DEBUG: Cached doc similarity={similarity:.2f} < {threshold}, not reusing.") | |
return None | |
def store_websearch_result(query: str, web_search_text: str): | |
""" | |
Embeds and stores the web search result text in the web search vector store, | |
keyed by the question in metadata. Then saves the store locally. | |
""" | |
if not web_search_text.strip(): | |
return # Don't store empty results | |
doc = Document(page_content=web_search_text, metadata={"question": query}) | |
web_search_vectorstore.add_documents([doc], embedding=websearch_embeddings) | |
web_search_vectorstore.save_local(web_search_store_dir) | |
def do_cached_web_search(query: str) -> str: | |
"""Perform a DuckDuckGo web search, but with caching via FAISS vector store.""" | |
# 1) Check cache | |
cached_result = get_cached_websearch(query) | |
if cached_result: | |
return cached_result | |
# 2) If no suitable cached answer, do a new search | |
try: | |
print("DEBUG: Performing a new web search...") | |
# model = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("GEMINI_API_KEY")) | |
model=HfApiModel() | |
search_tool = DuckDuckGoSearchTool() | |
web_agent = CodeAgent( | |
tools=[search_tool], | |
model=model | |
) | |
managed_web_agent = ManagedAgent( | |
agent=web_agent, | |
name="web_search", | |
description="Runs a web search for you. Provide your query as an argument." | |
) | |
manager_agent = CodeAgent( | |
tools=[], # If you have additional tools for the manager, add them here | |
model=model, | |
managed_agents=[managed_web_agent] | |
) | |
new_search_result = manager_agent.run(f"Search for information about: {query}") | |
# 3) Store in cache for future reuse | |
store_websearch_result(query, new_search_result) | |
return str(new_search_result).strip() | |
except Exception as e: | |
print(f"Web search failed: {e}") | |
return "" | |
################################################################################ | |
# Response Merging | |
################################################################################ | |
def merge_responses(csv_answer: str, web_answer: str) -> str: | |
"""Merge CSV-based RAG result with web search results.""" | |
try: | |
if not csv_answer and not web_answer: | |
return "I apologize, but I couldn't find any relevant information." | |
if not web_answer: | |
return csv_answer | |
if not csv_answer: | |
return web_answer | |
return f"{csv_answer}\n\nAdditional information from web search:\n{web_answer}" | |
except Exception as e: | |
print(f"Error merging responses: {e}") | |
return csv_answer or web_answer or "I apologize, but I couldn't process the information properly." | |
################################################################################ | |
# Main Pipeline | |
################################################################################ | |
def run_pipeline(query: str) -> str: | |
""" | |
Pipeline logic to: | |
1) Sanitize & moderate the query | |
2) Classify the query (OutOfScope, Wellness, Brand, etc.) | |
3) If safe & in scope, do RAG + ALWAYS do a cached web search | |
4) Merge responses and tailor final output | |
""" | |
try: | |
print(query) | |
sanitized_query = sanitize_message(query) | |
query_input = QueryInput(query=sanitized_query) | |
topic = extract_main_topic(query_input.query) | |
moderation_result = moderate_text(query_input.query) | |
# Check for unsafe content | |
if not moderation_result.is_safe: | |
return "Sorry, this query contains harmful or inappropriate content." | |
# Classify | |
classification = classify_query(moderation_result.original_text) | |
# If out-of-scope, refuse | |
if classification == "OutOfScope": | |
refusal_text = refusal_chain.invoke({"topic": topic,"query":query}) | |
return tailor_chain.run({"response": refusal_text}).strip() | |
# Otherwise, do a RAG query and also do a web search (cached) | |
if classification == "Wellness": | |
# RAG from wellness store | |
rag_result = wellness_rag_chain({"query": moderation_result.original_text}) | |
csv_answer = rag_result.get("result", "").strip() if isinstance(rag_result, dict) else str(rag_result).strip() | |
# Always do a (cached) web search | |
web_answer = do_cached_web_search(moderation_result.original_text) | |
# Merge CSV & Web | |
final_merged = merge_responses(csv_answer, web_answer) | |
return tailor_chain.run({"response": final_merged}).strip() | |
if classification == "Brand": | |
# RAG from brand store | |
rag_result = brand_rag_chain({"query": moderation_result.original_text}) | |
csv_answer = rag_result.get("result", "").strip() if isinstance(rag_result, dict) else str(rag_result).strip() | |
# Always do a (cached) web search | |
web_answer = do_cached_web_search(moderation_result.original_text) | |
# Merge CSV & Web | |
final_merged = merge_responses(csv_answer, web_answer) | |
return tailor_chain.run({"response": final_merged}).strip() | |
# If it doesn't fall under known categories, return refusal by default. | |
refusal_text = refusal_chain.invoke({"topic": topic,"query":query}) | |
return tailor_chain.run({"response": refusal_text}).strip() | |
except ValidationError as e: | |
raise ValueError(f"Input validation failed: {str(e)}") | |
except Exception as e: | |
raise RuntimeError(f"Error in run_pipeline: {str(e)}") | |
def run_with_chain(query: str) -> str: | |
"""Convenience function to run the main pipeline and handle errors gracefully.""" | |
try: | |
return run_pipeline(query) | |
except Exception as e: | |
print(f"Error in run_with_chain: {str(e)}") | |
return "I apologize, but I encountered an error processing your request. Please try again." | |
################################################################################ | |
# Chain & Vectorstore Initialization | |
################################################################################ | |
# Load your classification/refusal/tailor/cleaner chains | |
classification_chain = get_classification_chain() | |
refusal_chain = get_refusal_chain() | |
tailor_chain = get_tailor_chain() | |
cleaner_chain = get_cleaner_chain() | |
# CSV file paths and store directories for RAG | |
wellness_csv = "AIChatbot.csv" | |
brand_csv = "BrandAI.csv" | |
wellness_store_dir = "faiss_wellness_store" | |
brand_store_dir = "faiss_brand_store" | |
# Build or load the vector stores | |
wellness_vectorstore = build_or_load_vectorstore(wellness_csv, wellness_store_dir) | |
brand_vectorstore = build_or_load_vectorstore(brand_csv, brand_store_dir) | |
# Build RAG chains | |
wellness_rag_chain = build_rag_chain(wellness_vectorstore) | |
brand_rag_chain = build_rag_chain(brand_vectorstore) | |
print("Pipeline initialized successfully! Ready to handle querie with caching.") | |