PNARoboticsGPT2 / app.py
PostNetworkAcademy's picture
Update app.py
120cd67 verified
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_name = "PostNetworkAcademy/gpt2-robotics-PostNetworkAcademy"
# Load tokenizer & model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Ensure tokens exist
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token or "<|endoftext|>"
# Force model to CPU (avoids device mismatch)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
def generate_text(prompt, max_length=100, temperature=0.7, top_p=0.9):
inputs = tokenizer(prompt, return_tensors="pt").to(device)
outputs = model.generate(
**inputs,
max_length=max_length,
temperature=temperature,
top_p=top_p,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Gradio UI
demo = gr.Interface(
fn=generate_text,
inputs=[
gr.Textbox(lines=4, placeholder="Enter your robotics prompt...", label="Prompt"),
gr.Slider(20, 500, value=100, step=10, label="Max Length"),
gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="Temperature"),
gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p"),
],
outputs=gr.Textbox(label="Generated Response"),
title="GPT-2 Robotics - PostNetworkAcademy",
description="Fine-tuned GPT-2 model for robotics."
)
if __name__ == "__main__":
demo.launch()