audio / demucs /train.py
PreciousMposa's picture
Upload 107 files
519d358 verified
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""Main training script entry point"""
import logging
import os
from pathlib import Path
import sys
from dora import hydra_main
import hydra
from hydra.core.global_hydra import GlobalHydra
from omegaconf import OmegaConf
import torch
from torch import nn
import torchaudio
from torch.utils.data import ConcatDataset
from . import distrib
from .wav import get_wav_datasets, get_musdb_wav_datasets
from .demucs import Demucs
from .hdemucs import HDemucs
from .htdemucs import HTDemucs
from .repitch import RepitchedWrapper
from .solver import Solver
from .states import capture_init
from .utils import random_subset
logger = logging.getLogger(__name__)
class TorchHDemucsWrapper(nn.Module):
"""Wrapper around torchaudio HDemucs implementation to provide the proper metadata
for model evaluation.
See https://pytorch.org/audio/stable/tutorials/hybrid_demucs_tutorial.html"""
@capture_init
def __init__(self, **kwargs):
super().__init__()
try:
from torchaudio.models import HDemucs as TorchHDemucs
except ImportError:
raise ImportError("Please upgrade torchaudio for using its implementation of HDemucs")
self.samplerate = kwargs.pop('samplerate')
self.segment = kwargs.pop('segment')
self.sources = kwargs['sources']
self.torch_hdemucs = TorchHDemucs(**kwargs)
def forward(self, mix):
return self.torch_hdemucs.forward(mix)
def get_model(args):
extra = {
'sources': list(args.dset.sources),
'audio_channels': args.dset.channels,
'samplerate': args.dset.samplerate,
'segment': args.model_segment or 4 * args.dset.segment,
}
klass = {
'demucs': Demucs,
'hdemucs': HDemucs,
'htdemucs': HTDemucs,
'torch_hdemucs': TorchHDemucsWrapper,
}[args.model]
kw = OmegaConf.to_container(getattr(args, args.model), resolve=True)
model = klass(**extra, **kw)
return model
def get_optimizer(model, args):
seen_params = set()
other_params = []
groups = []
for n, module in model.named_modules():
if hasattr(module, "make_optim_group"):
group = module.make_optim_group()
params = set(group["params"])
assert params.isdisjoint(seen_params)
seen_params |= set(params)
groups.append(group)
for param in model.parameters():
if param not in seen_params:
other_params.append(param)
groups.insert(0, {"params": other_params})
parameters = groups
if args.optim.optim == "adam":
return torch.optim.Adam(
parameters,
lr=args.optim.lr,
betas=(args.optim.momentum, args.optim.beta2),
weight_decay=args.optim.weight_decay,
)
elif args.optim.optim == "adamw":
return torch.optim.AdamW(
parameters,
lr=args.optim.lr,
betas=(args.optim.momentum, args.optim.beta2),
weight_decay=args.optim.weight_decay,
)
else:
raise ValueError("Invalid optimizer %s", args.optim.optimizer)
def get_datasets(args):
if args.dset.backend:
torchaudio.set_audio_backend(args.dset.backend)
if args.dset.use_musdb:
train_set, valid_set = get_musdb_wav_datasets(args.dset)
else:
train_set, valid_set = [], []
if args.dset.wav:
extra_train_set, extra_valid_set = get_wav_datasets(args.dset)
if len(args.dset.sources) <= 4:
train_set = ConcatDataset([train_set, extra_train_set])
valid_set = ConcatDataset([valid_set, extra_valid_set])
else:
train_set = extra_train_set
valid_set = extra_valid_set
if args.dset.wav2:
extra_train_set, extra_valid_set = get_wav_datasets(args.dset, "wav2")
weight = args.dset.wav2_weight
if weight is not None:
b = len(train_set)
e = len(extra_train_set)
reps = max(1, round(e / b * (1 / weight - 1)))
else:
reps = 1
train_set = ConcatDataset([train_set] * reps + [extra_train_set])
if args.dset.wav2_valid:
if weight is not None:
b = len(valid_set)
n_kept = int(round(weight * b / (1 - weight)))
valid_set = ConcatDataset(
[valid_set, random_subset(extra_valid_set, n_kept)]
)
else:
valid_set = ConcatDataset([valid_set, extra_valid_set])
if args.dset.valid_samples is not None:
valid_set = random_subset(valid_set, args.dset.valid_samples)
assert len(train_set)
assert len(valid_set)
return train_set, valid_set
def get_solver(args, model_only=False):
distrib.init()
torch.manual_seed(args.seed)
model = get_model(args)
if args.misc.show:
logger.info(model)
mb = sum(p.numel() for p in model.parameters()) * 4 / 2**20
logger.info('Size: %.1f MB', mb)
if hasattr(model, 'valid_length'):
field = model.valid_length(1)
logger.info('Field: %.1f ms', field / args.dset.samplerate * 1000)
sys.exit(0)
# torch also initialize cuda seed if available
if torch.cuda.is_available():
model.cuda()
# optimizer
optimizer = get_optimizer(model, args)
assert args.batch_size % distrib.world_size == 0
args.batch_size //= distrib.world_size
if model_only:
return Solver(None, model, optimizer, args)
train_set, valid_set = get_datasets(args)
if args.augment.repitch.proba:
vocals = []
if 'vocals' in args.dset.sources:
vocals.append(args.dset.sources.index('vocals'))
else:
logger.warning('No vocal source found')
if args.augment.repitch.proba:
train_set = RepitchedWrapper(train_set, vocals=vocals, **args.augment.repitch)
logger.info("train/valid set size: %d %d", len(train_set), len(valid_set))
train_loader = distrib.loader(
train_set, batch_size=args.batch_size, shuffle=True,
num_workers=args.misc.num_workers, drop_last=True)
if args.dset.full_cv:
valid_loader = distrib.loader(
valid_set, batch_size=1, shuffle=False,
num_workers=args.misc.num_workers)
else:
valid_loader = distrib.loader(
valid_set, batch_size=args.batch_size, shuffle=False,
num_workers=args.misc.num_workers, drop_last=True)
loaders = {"train": train_loader, "valid": valid_loader}
# Construct Solver
return Solver(loaders, model, optimizer, args)
def get_solver_from_sig(sig, model_only=False):
inst = GlobalHydra.instance()
hyd = None
if inst.is_initialized():
hyd = inst.hydra
inst.clear()
xp = main.get_xp_from_sig(sig)
if hyd is not None:
inst.clear()
inst.initialize(hyd)
with xp.enter(stack=True):
return get_solver(xp.cfg, model_only)
@hydra_main(config_path="../conf", config_name="config", version_base="1.1")
def main(args):
global __file__
__file__ = hydra.utils.to_absolute_path(__file__)
for attr in ["musdb", "wav", "metadata"]:
val = getattr(args.dset, attr)
if val is not None:
setattr(args.dset, attr, hydra.utils.to_absolute_path(val))
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["MKL_NUM_THREADS"] = "1"
if args.misc.verbose:
logger.setLevel(logging.DEBUG)
logger.info("For logs, checkpoints and samples check %s", os.getcwd())
logger.debug(args)
from dora import get_xp
logger.debug(get_xp().cfg)
solver = get_solver(args)
solver.train()
if '_DORA_TEST_PATH' in os.environ:
main.dora.dir = Path(os.environ['_DORA_TEST_PATH'])
if __name__ == "__main__":
main()