Spaces:
Running
Running
File size: 9,577 Bytes
a657484 02ab8b4 1afccba bb4627c 270b829 a657484 270b829 9858a63 bb4627c a657484 bb4627c 9858a63 bb4627c a657484 bb4627c a657484 bb4627c a657484 bb4627c 9858a63 bb4627c a657484 bb4627c 9858a63 bb4627c a657484 bb4627c 9858a63 bb4627c a657484 bb4627c 9858a63 bb4627c a657484 bb4627c 9858a63 bb4627c a657484 bb4627c 9858a63 bb4627c 9858a63 bb4627c a657484 bb4627c 9858a63 bb4627c a657484 bb4627c 9858a63 bb4627c a657484 bb4627c 9858a63 bb4627c a657484 bb4627c a657484 9858a63 bb4627c 9858a63 bb4627c 9858a63 bb4627c 9858a63 bb4627c 9858a63 bb4627c 9858a63 bb4627c 9858a63 bb4627c 9858a63 bb4627c 9858a63 bb4627c 9858a63 bb4627c 9858a63 bb4627c 9858a63 bb4627c 9858a63 bb4627c 9858a63 bb4627c 9858a63 bb4627c 9858a63 bb4627c 9858a63 bb4627c 9858a63 bb4627c 9858a63 bb4627c 9858a63 bb4627c 9858a63 4ce8649 a657484 bb4627c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
# app.py - Hybrid Gradio + FastAPI wrapper for multimodal_module.py
import os
import shutil
import asyncio
import json
from typing import Optional
import gradio as gr
from fastapi import FastAPI, Request
from multimodal_module import MultiModalChatModule
# Instantiate AI
AI = MultiModalChatModule()
# ============================================================
# Helper: File wrapper for Gradio uploads
# ============================================================
class GradioFileWrapper:
def __init__(self, gr_file):
if isinstance(gr_file, str):
self._path = gr_file
else:
try:
self._path = gr_file.name
except Exception:
try:
self._path = gr_file["name"]
except Exception:
raise ValueError("Unsupported file object from Gradio")
async def download_to_drive(self, dst_path: str) -> None:
loop = asyncio.get_event_loop()
await loop.run_in_executor(None, shutil.copyfile, self._path, dst_path)
# ============================================================
# Async-safe helper
# ============================================================
def run_async(coro):
try:
loop = asyncio.get_running_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
loop = asyncio.get_event_loop()
return loop.run_until_complete(coro)
# ============================================================
# Callback functions (used by Gradio & API)
# ============================================================
def text_chat(user_id: Optional[int], text: str, lang: str = "en"):
try:
uid = int(user_id) if user_id else 0
reply = run_async(AI.generate_response(text, uid, lang))
return reply
except Exception as e:
return f"Error: {e}"
def voice_process(user_id: Optional[int], audio_file):
try:
uid = int(user_id) if user_id else 0
wrapper = GradioFileWrapper(audio_file)
result = run_async(AI.process_voice_message(wrapper, uid))
return json.dumps(result, ensure_ascii=False, indent=2)
except Exception as e:
return f"Error: {e}"
def generate_voice(user_id: Optional[int], reply_text: str, fmt: str = "ogg"):
try:
uid = int(user_id) if user_id else 0
path = run_async(AI.generate_voice_reply(reply_text, uid, fmt))
return path
except Exception as e:
return None, f"Error: {e}"
def image_caption(user_id: Optional[int], image_file):
try:
uid = int(user_id) if user_id else 0
wrapper = GradioFileWrapper(image_file)
caption = run_async(AI.process_image_message(wrapper, uid))
return caption
except Exception as e:
return f"Error: {e}"
def generate_image(user_id: Optional[int], prompt: str, width: int = 512, height: int = 512, steps: int = 30):
try:
uid = int(user_id) if user_id else 0
path = run_async(AI.generate_image_from_text(prompt, uid, width=width, height=height, steps=steps))
return path
except Exception as e:
return f"Error: {e}"
def edit_image(user_id: Optional[int], image_file, mask_file, prompt: str = ""):
try:
uid = int(user_id) if user_id else 0
img_w = GradioFileWrapper(image_file)
mask_w = GradioFileWrapper(mask_file) if mask_file else None
path = run_async(AI.edit_image_inpaint(img_w, mask_w, prompt, uid))
return path
except Exception as e:
return f"Error: {e}"
def process_video(user_id: Optional[int], video_file):
try:
uid = int(user_id) if user_id else 0
wrapper = GradioFileWrapper(video_file)
res = run_async(AI.process_video(wrapper, uid))
return json.dumps(res, ensure_ascii=False, indent=2)
except Exception as e:
return f"Error: {e}"
def process_file(user_id: Optional[int], file_obj):
try:
uid = int(user_id) if user_id else 0
w = GradioFileWrapper(file_obj)
res = run_async(AI.process_file(w, uid))
return json.dumps(res, ensure_ascii=False, indent=2)
except Exception as e:
return f"Error: {e}"
def code_complete(user_id: Optional[int], prompt: str, max_tokens: int = 512):
try:
uid = int(user_id) if user_id else 0
out = run_async(AI.code_complete(prompt, max_tokens=max_tokens))
return out
except Exception as e:
return f"Error: {e}"
# ============================================================
# FastAPI public API
# ============================================================
api = FastAPI()
@api.post("/api/predict")
async def api_predict(request: Request):
try:
data = await request.json()
user_id = data.get("user_id", 0)
text = data.get("text", "")
lang = data.get("lang", "en")
reply = text_chat(user_id, text, lang)
return {"status": "ok", "reply": reply}
except Exception as e:
return {"status": "error", "message": str(e)}
# ============================================================
# Gradio UI
# ============================================================
with gr.Blocks(title="Multimodal Bot (Gradio)") as demo:
gr.Markdown("# π§ Multimodal Bot\nInteract via text, voice, images, video, or files.")
with gr.Tab("π¬ Text Chat"):
with gr.Row():
user_id_txt = gr.Textbox(label="User ID (optional)", placeholder="0")
lang_sel = gr.Dropdown(choices=["en","zh","ja","ko","es","fr","de","it"], value="en", label="Language")
txt_in = gr.Textbox(label="Your message", lines=4)
txt_out = gr.Textbox(label="Bot reply", lines=6)
gr.Button("Send").click(text_chat, [user_id_txt, txt_in, lang_sel], txt_out)
with gr.Tab("π€ Voice (Transcribe + Emotion)"):
user_id_voice = gr.Textbox(label="User ID (optional)", placeholder="0")
voice_in = gr.Audio(sources=["microphone", "upload"], type="filepath", label="Record or upload voice (.ogg/.wav)")
voice_out = gr.Textbox(label="Result JSON")
gr.Button("Process Voice").click(voice_process, [user_id_voice, voice_in], voice_out)
with gr.Tab("π Voice Reply (TTS)"):
user_id_vr = gr.Textbox(label="User ID (optional)", placeholder="0")
vr_text = gr.Textbox(label="Text to speak", lines=4)
vr_fmt = gr.Dropdown(choices=["ogg","wav","mp3"], value="ogg", label="Format")
vr_audio = gr.Audio(label="Generated Voice")
gr.Button("Generate Voice").click(generate_voice, [user_id_vr, vr_text, vr_fmt], vr_audio)
with gr.Tab("πΌοΈ Image Caption"):
user_id_img = gr.Textbox(label="User ID (optional)", placeholder="0")
img_in = gr.Image(type="filepath", label="Upload Image")
img_out = gr.Textbox(label="Caption")
gr.Button("Caption Image").click(image_caption, [user_id_img, img_in], img_out)
with gr.Tab("π¨ Image Generate"):
user_id_gi = gr.Textbox(label="User ID (optional)", placeholder="0")
prompt_in = gr.Textbox(label="Prompt", lines=3)
width = gr.Slider(256, 1024, 512, step=64, label="Width")
height = gr.Slider(256, 1024, 512, step=64, label="Height")
steps = gr.Slider(10, 50, 30, step=5, label="Steps")
gen_out = gr.Image(type="filepath", label="Generated image")
gr.Button("Generate").click(generate_image, [user_id_gi, prompt_in, width, height, steps], gen_out)
with gr.Tab("βοΈ Image Edit (Inpaint)"):
user_id_ie = gr.Textbox(label="User ID (optional)", placeholder="0")
edit_img = gr.Image(type="filepath", label="Image to edit")
edit_mask = gr.Image(type="filepath", label="Mask (optional)")
edit_prompt = gr.Textbox(label="Prompt", lines=2)
edit_out = gr.Image(type="filepath", label="Edited image")
gr.Button("Edit Image").click(edit_image, [user_id_ie, edit_img, edit_mask, edit_prompt], edit_out)
with gr.Tab("π₯ Video"):
user_id_vid = gr.Textbox(label="User ID (optional)", placeholder="0")
vid_in = gr.Video(label="Upload video")
vid_out = gr.Textbox(label="Result JSON")
gr.Button("Process Video").click(process_video, [user_id_vid, vid_in], vid_out)
with gr.Tab("π Files (PDF/DOCX/TXT)"):
user_id_file = gr.Textbox(label="User ID (optional)", placeholder="0")
file_in = gr.File(label="Upload file")
file_out = gr.Textbox(label="Result JSON")
gr.Button("Process File").click(process_file, [user_id_file, file_in], file_out)
with gr.Tab("π» Code Generation"):
user_id_code = gr.Textbox(label="User ID (optional)", placeholder="0")
code_prompt = gr.Textbox(label="Code prompt", lines=6)
code_out = gr.Textbox(label="Generated code", lines=12)
gr.Button("Generate Code").click(code_complete, [user_id_code, code_prompt], code_out)
gr.Markdown("----\nThis Space runs your exact `multimodal_module.py`. First requests may take longer due to model loading.")
# ============================================================
# Launch both API + Gradio
# ============================================================
import uvicorn
from threading import Thread
def start_api():
uvicorn.run(api, host="0.0.0.0", port=8000)
# Start FastAPI in a separate thread
Thread(target=start_api, daemon=True).start()
# Launch Gradio
demo.queue()
demo.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860))) |