Spaces:
Running
Running
File size: 7,565 Bytes
b2130a6 02ab8b4 1afccba 1de5d77 bb4627c 1de5d77 270b829 1de5d77 b2130a6 270b829 b2130a6 bb4627c 1de5d77 b2130a6 1de5d77 bb4627c ea54d29 b2130a6 ea54d29 b2130a6 1de5d77 b2130a6 1de5d77 ea54d29 1de5d77 b2130a6 ea54d29 b2130a6 1de5d77 b2130a6 1de5d77 b2130a6 1de5d77 b2130a6 1de5d77 b2130a6 1de5d77 a657484 ea54d29 1de5d77 bb4627c 1de5d77 a657484 1de5d77 bb4627c ea54d29 1de5d77 bb4627c 1de5d77 a657484 1de5d77 bb4627c ea54d29 1de5d77 bb4627c 1de5d77 a657484 1de5d77 bb4627c ea54d29 1de5d77 bb4627c 1de5d77 bb4627c 1de5d77 bb4627c ea54d29 1de5d77 bb4627c 1de5d77 a657484 1de5d77 bb4627c ea54d29 1de5d77 bb4627c 1de5d77 a657484 1de5d77 bb4627c ea54d29 1de5d77 ea54d29 1de5d77 bb4627c 1de5d77 bb4627c 1de5d77 bb4627c ea54d29 1de5d77 bb4627c 1de5d77 a657484 1de5d77 bb4627c ea54d29 1de5d77 bb4627c 1de5d77 a657484 1de5d77 a657484 ea54d29 1de5d77 a657484 1de5d77 b2130a6 1de5d77 ea54d29 b2130a6 1de5d77 b2130a6 1de5d77 b2130a6 1de5d77 b2130a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
# app.py -- HF-ready single-server FastAPI + Gradio mounted app (no double server conflict)
import os
import shutil
import asyncio
import inspect
from typing import Optional
from fastapi import FastAPI, UploadFile, File, Form
from fastapi.responses import JSONResponse
import gradio as gr
import uvicorn
# Import your multimodal module
from multimodal_module import MultiModalChatModule
# Instantiate AI module
AI = MultiModalChatModule()
# ---------- Helpers ----------
TMP_DIR = "/tmp"
os.makedirs(TMP_DIR, exist_ok=True)
class FileWrapper:
"""Simple path wrapper for AI methods."""
def __init__(self, path: str):
self._path = path
async def download_to_drive(self, dst_path: str) -> None:
loop = asyncio.get_event_loop()
await loop.run_in_executor(None, shutil.copyfile, self._path, dst_path)
async def save_upload_to_tmp(up: UploadFile) -> str:
"""Save FastAPI UploadFile to /tmp and return path."""
if not up or not up.filename:
raise ValueError("No file uploaded")
dest = os.path.join(TMP_DIR, up.filename)
data = await up.read()
with open(dest, "wb") as f:
f.write(data)
return dest
async def call_ai(fn, *args, **kwargs):
"""Run AI method whether it's sync or async."""
if fn is None:
raise AttributeError("Requested AI method not implemented")
if inspect.iscoroutinefunction(fn):
return await fn(*args, **kwargs)
return await asyncio.to_thread(lambda: fn(*args, **kwargs))
# ---------- FastAPI ----------
app = FastAPI(title="Multimodal Module API")
# CORS (if you call this from the browser)
from fastapi.middleware.cors import CORSMiddleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # tighten for prod
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# ----------------- API endpoints -----------------
@app.post("/api/predict")
async def api_predict(inputs: str = Form(...), user_id: Optional[int] = Form(0), lang: str = Form("en")):
try:
fn = getattr(AI, "generate_response", getattr(AI, "process_text", None))
reply = await call_ai(fn, inputs, int(user_id), lang)
return {"data": [reply]}
except Exception as e:
return JSONResponse({"error": str(e)}, status_code=500)
@app.post("/api/text")
async def api_text(text: str = Form(...), user_id: Optional[int] = Form(0), lang: str = Form("en")):
try:
fn = getattr(AI, "generate_response", getattr(AI, "process_text", None))
reply = await call_ai(fn, text, int(user_id), lang)
return {"status": "ok", "reply": reply}
except Exception as e:
return JSONResponse({"error": str(e)}, status_code=500)
@app.post("/api/voice")
async def api_voice(user_id: Optional[int] = Form(0), audio_file: UploadFile = File(...)):
try:
path = await save_upload_to_tmp(audio_file)
fn = getattr(AI, "process_voice_message", None)
result = await call_ai(fn, FileWrapper(path), int(user_id))
return JSONResponse(result)
except Exception as e:
return JSONResponse({"error": str(e)}, status_code=500)
@app.post("/api/voice_reply")
async def api_voice_reply(user_id: Optional[int] = Form(0), reply_text: str = Form(...), fmt: str = Form("ogg")):
try:
fn = getattr(AI, "generate_voice_reply", None)
result = await call_ai(fn, reply_text, int(user_id), fmt)
return {"status": "ok", "file": result}
except Exception as e:
return JSONResponse({"error": str(e)}, status_code=500)
@app.post("/api/image_caption")
async def api_image_caption(user_id: Optional[int] = Form(0), image_file: UploadFile = File(...)):
try:
path = await save_upload_to_tmp(image_file)
fn = getattr(AI, "process_image_message", None)
caption = await call_ai(fn, FileWrapper(path), int(user_id))
return {"status": "ok", "caption": caption}
except Exception as e:
return JSONResponse({"error": str(e)}, status_code=500)
@app.post("/api/generate_image")
async def api_generate_image(user_id: Optional[int] = Form(0), prompt: str = Form(...), width: int = Form(512), height: int = Form(512), steps: int = Form(30)):
try:
fn = getattr(AI, "generate_image_from_text", None)
out_path = await call_ai(fn, prompt, int(user_id), width, height, steps)
return {"status": "ok", "file": out_path}
except Exception as e:
return JSONResponse({"error": str(e)}, status_code=500)
@app.post("/api/edit_image")
async def api_edit_image(user_id: Optional[int] = Form(0), image_file: UploadFile = File(...), mask_file: Optional[UploadFile] = File(None), prompt: str = Form("")):
try:
img_path = await save_upload_to_tmp(image_file)
mask_path = None
if mask_file:
mask_path = await save_upload_to_tmp(mask_file)
fn = getattr(AI, "edit_image_inpaint", None)
out_path = await call_ai(fn, FileWrapper(img_path), FileWrapper(mask_path) if mask_path else None, prompt, int(user_id))
return {"status": "ok", "file": out_path}
except Exception as e:
return JSONResponse({"error": str(e)}, status_code=500)
@app.post("/api/video")
async def api_video(user_id: Optional[int] = Form(0), video_file: UploadFile = File(...)):
try:
path = await save_upload_to_tmp(video_file)
fn = getattr(AI, "process_video", None)
result = await call_ai(fn, FileWrapper(path), int(user_id))
return JSONResponse(result)
except Exception as e:
return JSONResponse({"error": str(e)}, status_code=500)
@app.post("/api/file")
async def api_file(user_id: Optional[int] = Form(0), file_obj: UploadFile = File(...)):
try:
path = await save_upload_to_tmp(file_obj)
fn = getattr(AI, "process_file", None)
result = await call_ai(fn, FileWrapper(path), int(user_id))
return JSONResponse(result)
except Exception as e:
return JSONResponse({"error": str(e)}, status_code=500)
@app.post("/api/code")
async def api_code(user_id: Optional[int] = Form(0), prompt: str = Form(...), max_tokens: int = Form(512)):
try:
fn = getattr(AI, "code_complete", None)
try:
result = await call_ai(fn, int(user_id), prompt, max_tokens)
except TypeError:
result = await call_ai(fn, prompt, max_tokens=max_tokens)
return {"status": "ok", "code": result}
except Exception as e:
return JSONResponse({"error": str(e)}, status_code=500)
# ---------- Minimal Gradio UI ----------
def gradio_text_fn(text, user_id, lang):
fn = getattr(AI, "generate_response", getattr(AI, "process_text", None))
if fn is None:
return "Error: text handler not implemented"
loop = asyncio.get_event_loop()
return loop.run_until_complete(call_ai(fn, text, int(user_id or 0), lang))
with gr.Blocks(title="Multimodal Bot (UI)") as demo:
gr.Markdown("# 🧠 Multimodal Bot — UI")
with gr.Row():
txt_uid = gr.Textbox(label="User ID", value="0")
txt_lang = gr.Dropdown(["en","zh","ja","ko","es","fr","de","it"], value="en", label="Language")
inp = gr.Textbox(lines=3, label="Message")
out = gr.Textbox(lines=6, label="Reply")
gr.Button("Send").click(gradio_text_fn, [inp, txt_uid, txt_lang], out)
# Mount Gradio at /
app = gr.mount_gradio_app(app, demo, path="/")
# ---------- Run ----------
if __name__ == "__main__":
port = int(os.environ.get("PORT", 7860))
uvicorn.run("app:app", host="0.0.0.0", port=port, reload=False) |