File size: 7,565 Bytes
b2130a6
02ab8b4
1afccba
 
1de5d77
bb4627c
1de5d77
 
270b829
1de5d77
 
b2130a6
270b829
 
b2130a6
bb4627c
 
1de5d77
 
 
 
 
b2130a6
1de5d77
 
bb4627c
 
 
 
 
ea54d29
b2130a6
ea54d29
b2130a6
1de5d77
b2130a6
1de5d77
ea54d29
1de5d77
 
 
b2130a6
ea54d29
b2130a6
1de5d77
 
b2130a6
1de5d77
b2130a6
1de5d77
 
b2130a6
1de5d77
 
 
b2130a6
1de5d77
 
 
 
 
 
 
 
a657484
ea54d29
 
1de5d77
bb4627c
1de5d77
a657484
1de5d77
 
bb4627c
ea54d29
 
1de5d77
bb4627c
1de5d77
a657484
1de5d77
 
bb4627c
ea54d29
 
 
1de5d77
bb4627c
1de5d77
a657484
1de5d77
 
bb4627c
ea54d29
 
1de5d77
bb4627c
1de5d77
bb4627c
1de5d77
 
bb4627c
ea54d29
 
 
1de5d77
bb4627c
1de5d77
a657484
1de5d77
 
bb4627c
ea54d29
 
1de5d77
bb4627c
1de5d77
a657484
1de5d77
 
bb4627c
ea54d29
1de5d77
 
ea54d29
 
 
1de5d77
bb4627c
1de5d77
bb4627c
1de5d77
 
bb4627c
ea54d29
 
 
1de5d77
bb4627c
1de5d77
a657484
1de5d77
 
bb4627c
ea54d29
 
 
1de5d77
bb4627c
1de5d77
a657484
1de5d77
 
a657484
ea54d29
 
 
 
 
1de5d77
a657484
1de5d77
 
b2130a6
1de5d77
ea54d29
 
b2130a6
 
 
1de5d77
 
 
 
 
 
 
 
 
 
b2130a6
1de5d77
 
b2130a6
1de5d77
 
b2130a6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# app.py -- HF-ready single-server FastAPI + Gradio mounted app (no double server conflict)
import os
import shutil
import asyncio
import inspect
from typing import Optional
from fastapi import FastAPI, UploadFile, File, Form
from fastapi.responses import JSONResponse
import gradio as gr
import uvicorn

# Import your multimodal module
from multimodal_module import MultiModalChatModule

# Instantiate AI module
AI = MultiModalChatModule()

# ---------- Helpers ----------
TMP_DIR = "/tmp"
os.makedirs(TMP_DIR, exist_ok=True)

class FileWrapper:
    """Simple path wrapper for AI methods."""
    def __init__(self, path: str):
        self._path = path

    async def download_to_drive(self, dst_path: str) -> None:
        loop = asyncio.get_event_loop()
        await loop.run_in_executor(None, shutil.copyfile, self._path, dst_path)

async def save_upload_to_tmp(up: UploadFile) -> str:
    """Save FastAPI UploadFile to /tmp and return path."""
    if not up or not up.filename:
        raise ValueError("No file uploaded")
    dest = os.path.join(TMP_DIR, up.filename)
    data = await up.read()
    with open(dest, "wb") as f:
        f.write(data)
    return dest

async def call_ai(fn, *args, **kwargs):
    """Run AI method whether it's sync or async."""
    if fn is None:
        raise AttributeError("Requested AI method not implemented")
    if inspect.iscoroutinefunction(fn):
        return await fn(*args, **kwargs)
    return await asyncio.to_thread(lambda: fn(*args, **kwargs))

# ---------- FastAPI ----------
app = FastAPI(title="Multimodal Module API")

# CORS (if you call this from the browser)
from fastapi.middleware.cors import CORSMiddleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # tighten for prod
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# ----------------- API endpoints -----------------
@app.post("/api/predict")
async def api_predict(inputs: str = Form(...), user_id: Optional[int] = Form(0), lang: str = Form("en")):
    try:
        fn = getattr(AI, "generate_response", getattr(AI, "process_text", None))
        reply = await call_ai(fn, inputs, int(user_id), lang)
        return {"data": [reply]}
    except Exception as e:
        return JSONResponse({"error": str(e)}, status_code=500)

@app.post("/api/text")
async def api_text(text: str = Form(...), user_id: Optional[int] = Form(0), lang: str = Form("en")):
    try:
        fn = getattr(AI, "generate_response", getattr(AI, "process_text", None))
        reply = await call_ai(fn, text, int(user_id), lang)
        return {"status": "ok", "reply": reply}
    except Exception as e:
        return JSONResponse({"error": str(e)}, status_code=500)

@app.post("/api/voice")
async def api_voice(user_id: Optional[int] = Form(0), audio_file: UploadFile = File(...)):
    try:
        path = await save_upload_to_tmp(audio_file)
        fn = getattr(AI, "process_voice_message", None)
        result = await call_ai(fn, FileWrapper(path), int(user_id))
        return JSONResponse(result)
    except Exception as e:
        return JSONResponse({"error": str(e)}, status_code=500)

@app.post("/api/voice_reply")
async def api_voice_reply(user_id: Optional[int] = Form(0), reply_text: str = Form(...), fmt: str = Form("ogg")):
    try:
        fn = getattr(AI, "generate_voice_reply", None)
        result = await call_ai(fn, reply_text, int(user_id), fmt)
        return {"status": "ok", "file": result}
    except Exception as e:
        return JSONResponse({"error": str(e)}, status_code=500)

@app.post("/api/image_caption")
async def api_image_caption(user_id: Optional[int] = Form(0), image_file: UploadFile = File(...)):
    try:
        path = await save_upload_to_tmp(image_file)
        fn = getattr(AI, "process_image_message", None)
        caption = await call_ai(fn, FileWrapper(path), int(user_id))
        return {"status": "ok", "caption": caption}
    except Exception as e:
        return JSONResponse({"error": str(e)}, status_code=500)

@app.post("/api/generate_image")
async def api_generate_image(user_id: Optional[int] = Form(0), prompt: str = Form(...), width: int = Form(512), height: int = Form(512), steps: int = Form(30)):
    try:
        fn = getattr(AI, "generate_image_from_text", None)
        out_path = await call_ai(fn, prompt, int(user_id), width, height, steps)
        return {"status": "ok", "file": out_path}
    except Exception as e:
        return JSONResponse({"error": str(e)}, status_code=500)

@app.post("/api/edit_image")
async def api_edit_image(user_id: Optional[int] = Form(0), image_file: UploadFile = File(...), mask_file: Optional[UploadFile] = File(None), prompt: str = Form("")):
    try:
        img_path = await save_upload_to_tmp(image_file)
        mask_path = None
        if mask_file:
            mask_path = await save_upload_to_tmp(mask_file)
        fn = getattr(AI, "edit_image_inpaint", None)
        out_path = await call_ai(fn, FileWrapper(img_path), FileWrapper(mask_path) if mask_path else None, prompt, int(user_id))
        return {"status": "ok", "file": out_path}
    except Exception as e:
        return JSONResponse({"error": str(e)}, status_code=500)

@app.post("/api/video")
async def api_video(user_id: Optional[int] = Form(0), video_file: UploadFile = File(...)):
    try:
        path = await save_upload_to_tmp(video_file)
        fn = getattr(AI, "process_video", None)
        result = await call_ai(fn, FileWrapper(path), int(user_id))
        return JSONResponse(result)
    except Exception as e:
        return JSONResponse({"error": str(e)}, status_code=500)

@app.post("/api/file")
async def api_file(user_id: Optional[int] = Form(0), file_obj: UploadFile = File(...)):
    try:
        path = await save_upload_to_tmp(file_obj)
        fn = getattr(AI, "process_file", None)
        result = await call_ai(fn, FileWrapper(path), int(user_id))
        return JSONResponse(result)
    except Exception as e:
        return JSONResponse({"error": str(e)}, status_code=500)

@app.post("/api/code")
async def api_code(user_id: Optional[int] = Form(0), prompt: str = Form(...), max_tokens: int = Form(512)):
    try:
        fn = getattr(AI, "code_complete", None)
        try:
            result = await call_ai(fn, int(user_id), prompt, max_tokens)
        except TypeError:
            result = await call_ai(fn, prompt, max_tokens=max_tokens)
        return {"status": "ok", "code": result}
    except Exception as e:
        return JSONResponse({"error": str(e)}, status_code=500)

# ---------- Minimal Gradio UI ----------
def gradio_text_fn(text, user_id, lang):
    fn = getattr(AI, "generate_response", getattr(AI, "process_text", None))
    if fn is None:
        return "Error: text handler not implemented"
    loop = asyncio.get_event_loop()
    return loop.run_until_complete(call_ai(fn, text, int(user_id or 0), lang))

with gr.Blocks(title="Multimodal Bot (UI)") as demo:
    gr.Markdown("# 🧠 Multimodal Bot — UI")
    with gr.Row():
        txt_uid = gr.Textbox(label="User ID", value="0")
        txt_lang = gr.Dropdown(["en","zh","ja","ko","es","fr","de","it"], value="en", label="Language")
    inp = gr.Textbox(lines=3, label="Message")
    out = gr.Textbox(lines=6, label="Reply")
    gr.Button("Send").click(gradio_text_fn, [inp, txt_uid, txt_lang], out)

# Mount Gradio at /
app = gr.mount_gradio_app(app, demo, path="/")

# ---------- Run ----------
if __name__ == "__main__":
    port = int(os.environ.get("PORT", 7860))
    uvicorn.run("app:app", host="0.0.0.0", port=port, reload=False)