Spaces:
Running
Running
File size: 24,993 Bytes
4815613 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 |
# multimodal_module.py
import os
import pickle
import subprocess
import tempfile
import shutil
import asyncio
from datetime import datetime
from typing import Dict, List, Optional, Any
import io
import uuid
# Core ML libs
import torch
from transformers import (
pipeline,
AutoModelForSeq2SeqLM,
AutoTokenizer,
Wav2Vec2Processor,
Wav2Vec2ForSequenceClassification,
)
from diffusers import StableDiffusionPipeline, StableDiffusionInpaintPipeline
from transformers import AutoModelForCausalLM, AutoTokenizer as HFTokenizer
# Audio / speech
import librosa
import speech_recognition as sr
from gtts import gTTS
# Image, video, files
from PIL import Image, ImageOps
import imageio_ffmpeg as ffmpeg
import imageio
import moviepy.editor as mp
import fitz # PyMuPDF for PDFs
# Misc
from langdetect import DetectorFactory
DetectorFactory.seed = 0
# Optional: safety-check toggles
USE_SAFETY_CHECKER = False
# Helper for temp files
def _tmp_path(suffix=""):
return os.path.join(tempfile.gettempdir(), f"{uuid.uuid4().hex}{suffix}")
class MultiModalChatModule:
"""
Full-power multimodal module.
- Lazy-loads big models on first use.
- Methods are async-friendly.
"""
def __init__(self, chat_history_file: str = "chat_histories.pkl"):
self.user_chat_histories: Dict[int, List[dict]] = self._load_chat_histories(chat_history_file)
self.chat_history_file = chat_history_file
# device
self.device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"[MultiModal] device: {self.device}")
# placeholders for large models (lazy)
self._voice_processor = None
self._voice_emotion_model = None
self._translator = None
self._chat_tokenizer = None
self._chat_model = None
self._chat_model_name = "bigscience/bloom" # placeholder; will set proper below
self._image_captioner = None
self._sd_pipe = None
self._sd_inpaint = None
self._code_tokenizer = None
self._code_model = None
# other small helpers
self._sr_recognizer = sr.Recognizer()
# set common model names (you can change)
self.model_names = {
"voice_emotion_processor": "facebook/hubert-large-ls960-ft",
"voice_emotion_model": "superb/hubert-base-superb-er",
"translation_model": "facebook/nllb-200-distilled-600M",
"chatbot_tokenizer": "facebook/blenderbot-400M-distill",
"chatbot_model": "facebook/blenderbot-400M-distill",
"image_captioner": "Salesforce/blip-image-captioning-base",
"sd_inpaint": "runwayml/stable-diffusion-inpainting",
"sd_text2img": "runwayml/stable-diffusion-v1-5",
"code_model": "bigcode/starcoder", # Or use a specific StarCoder checkpoint on HF
}
# keep track of which heavy groups are loaded
self._loaded = {
"voice": False,
"translation": False,
"chat": False,
"image_caption": False,
"sd": False,
"code": False,
}
# ----------------------
# persistence
# ----------------------
def _load_chat_histories(self, fn: str) -> Dict[int, List[dict]]:
try:
with open(fn, "rb") as f:
return pickle.load(f)
except Exception:
return {}
def _save_chat_histories(self):
try:
with open(self.chat_history_file, "wb") as f:
pickle.dump(self.user_chat_histories, f)
except Exception as e:
print("[MultiModal] Warning: failed to save chat histories:", e)
# ----------------------
# Lazy loaders
# ----------------------
def _load_voice_models(self):
if self._loaded["voice"]:
return
print("[MultiModal] Loading voice/emotion models...")
self._voice_processor = Wav2Vec2Processor.from_pretrained(self.model_names["voice_emotion_processor"])
self._voice_emotion_model = Wav2Vec2ForSequenceClassification.from_pretrained(self.model_names["voice_emotion_model"]).to(self.device)
self._loaded["voice"] = True
print("[MultiModal] Voice models loaded.")
def _load_translation(self):
if self._loaded["translation"]:
return
print("[MultiModal] Loading translation pipeline...")
device_idx = 0 if self.device == "cuda" else -1
self._translator = pipeline("translation", model=self.model_names["translation_model"], device=device_idx)
self._loaded["translation"] = True
print("[MultiModal] Translation loaded.")
def _load_chatbot(self):
if self._loaded["chat"]:
return
print("[MultiModal] Loading chatbot model...")
# chatbot: keep current blenderbot to preserve behaviour
self._chat_tokenizer = AutoTokenizer.from_pretrained(self.model_names["chatbot_tokenizer"])
self._chat_model = AutoModelForSeq2SeqLM.from_pretrained(self.model_names["chatbot_model"]).to(self.device)
self._loaded["chat"] = True
print("[MultiModal] Chatbot loaded.")
def _load_image_captioner(self):
if self._loaded["image_caption"]:
return
print("[MultiModal] Loading image captioner...")
device_idx = 0 if self.device == "cuda" else -1
self._image_captioner = pipeline("image-to-text", model=self.model_names["image_captioner"], device=device_idx)
self._loaded["image_caption"] = True
print("[MultiModal] Image captioner loaded.")
def _load_sd(self):
if self._loaded["sd"]:
return
print("[MultiModal] Loading Stable Diffusion pipelines...")
# text2img
sd_model = self.model_names["sd_text2img"]
sd_inpaint_model = self.model_names["sd_inpaint"]
# Use float16 on GPU for speed
torch_dtype = torch.float16 if self.device == "cuda" else torch.float32
try:
self._sd_pipe = StableDiffusionPipeline.from_pretrained(sd_model, torch_dtype=torch_dtype)
self._sd_pipe = self._sd_pipe.to(self.device)
except Exception as e:
print("[MultiModal] Warning loading text2img:", e)
self._sd_pipe = None
try:
self._sd_inpaint = StableDiffusionInpaintPipeline.from_pretrained(sd_inpaint_model, torch_dtype=torch_dtype)
self._sd_inpaint = self._sd_inpaint.to(self.device)
except Exception as e:
print("[MultiModal] Warning loading inpaint:", e)
self._sd_inpaint = None
self._loaded["sd"] = True
print("[MultiModal] Stable Diffusion loaded (where possible).")
def _load_code_model(self):
if self._loaded["code"]:
return
print("[MultiModal] Loading code model...")
# StarCoder style model (may require HF_TOKEN or large memory)
try:
self._code_tokenizer = HFTokenizer.from_pretrained(self.model_names["code_model"])
self._code_model = AutoModelForCausalLM.from_pretrained(self.model_names["code_model"]).to(self.device)
self._loaded["code"] = True
print("[MultiModal] Code model loaded.")
except Exception as e:
print("[MultiModal] Warning: could not load code model:", e)
self._code_tokenizer = None
self._code_model = None
# ----------------------
# Voice: analyze emotion, transcribe
# ----------------------
async def analyze_voice_emotion(self, audio_path: str) -> str:
self._load_voice_models()
speech, sr_ = librosa.load(audio_path, sr=16000)
inputs = self._voice_processor(speech, sampling_rate=sr_, return_tensors="pt", padding=True).to(self.device)
with torch.no_grad():
logits = self._voice_emotion_model(**inputs).logits
predicted_class = torch.argmax(logits).item()
return {
0: "π Happy",
1: "π’ Sad",
2: "π Angry",
3: "π¨ Fearful",
4: "π Calm",
5: "π² Surprised",
}.get(predicted_class, "π€ Unknown")
async def process_voice_message(self, voice_file, user_id: int) -> dict:
"""
voice_file: Starlette UploadFile or object with get_file() used previously in your code.
Returns: {text, language, emotion}
"""
# Save OGG locally
ogg_path = _tmp_path(".ogg")
wav_path = _tmp_path(".wav")
tf = await voice_file.get_file()
await tf.download_to_drive(ogg_path)
# Convert to WAV via ffmpeg
try:
ffmpeg_path = ffmpeg.get_ffmpeg_exe()
subprocess.run([ffmpeg_path, "-y", "-i", ogg_path, wav_path], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
except Exception as e:
# fallback: try ffmpeg in PATH
try:
subprocess.run(["ffmpeg", "-y", "-i", ogg_path, wav_path], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
except Exception as ee:
raise RuntimeError(f"ffmpeg conversion failed: {e} / {ee}")
# Transcribe using SpeechRecognition Google STT (as before) -- or you can integrate whisper
recognizer = self._sr_recognizer
with sr.AudioFile(wav_path) as source:
audio = recognizer.record(source)
detected_lang = None
detected_text = ""
# tried languages set
lang_map = {
"zh": {"stt": "zh-CN"},
"ja": {"stt": "ja-JP"},
"ko": {"stt": "ko-KR"},
"en": {"stt": "en-US"},
"es": {"stt": "es-ES"},
"fr": {"stt": "fr-FR"},
"de": {"stt": "de-DE"},
"it": {"stt": "it-IT"},
}
for lang_code, lang_data in lang_map.items():
try:
detected_text = recognizer.recognize_google(audio, language=lang_data["stt"])
detected_lang = lang_code
break
except sr.UnknownValueError:
continue
except Exception:
continue
if not detected_lang:
# If not recognized, try fallback: detect from small chunk via langdetect
detected_lang = "en"
detected_text = ""
# emotion
emotion = await self.analyze_voice_emotion(wav_path)
# remove temp files
try:
os.remove(ogg_path)
os.remove(wav_path)
except Exception:
pass
return {"text": detected_text, "language": detected_lang, "emotion": emotion}
# ----------------------
# Text chat with translation & history
# ----------------------
async def generate_response(self, text: str, user_id: int, lang: str = "en") -> str:
# Ensure chat model loaded
self._load_chatbot()
self._load_translation()
if user_id not in self.user_chat_histories:
self.user_chat_histories[user_id] = []
self.user_chat_histories[user_id].append({"timestamp": datetime.now().isoformat(), "role": "user", "text": text, "language": lang})
self.user_chat_histories[user_id] = self.user_chat_histories[user_id][-100:]
self._save_chat_histories()
# Build context: translate last few msgs to English for consistency
context_texts = []
for msg in self.user_chat_histories[user_id][-5:]:
if msg.get("language", "en") != "en":
try:
translated = self._translator(msg["text"])[0]["translation_text"]
except Exception:
translated = msg["text"]
else:
translated = msg["text"]
context_texts.append(f"{msg['role']}: {translated}")
context = "\n".join(context_texts)
input_text = f"Context:\n{context}\nUser: {text if lang == 'en' else context_texts[-1].split(': ', 1)[1]}"
# Tokenize + generate
inputs = self._chat_tokenizer.encode(input_text, return_tensors="pt").to(self.device)
outputs = self._chat_model.generate(inputs, max_length=1000)
response_en = self._chat_tokenizer.decode(outputs[0], skip_special_tokens=True)
# Translate back to user's language if needed
if lang != "en":
try:
response = self._translator(response_en)[0]["translation_text"]
except Exception:
response = response_en
else:
response = response_en
self.user_chat_histories[user_id].append({"timestamp": datetime.now().isoformat(), "role": "bot", "text": response, "language": lang})
self._save_chat_histories()
return response
# ----------------------
# Image captioning (existing)
# ----------------------
async def process_image_message(self, image_file, user_id: int) -> str:
# Save image
img_path = _tmp_path(".jpg")
tf = await image_file.get_file()
await tf.download_to_drive(img_path)
# load captioner
self._load_image_captioner()
try:
image = Image.open(img_path).convert("RGB")
description = self._image_captioner(image)[0]["generated_text"]
except Exception as e:
description = f"[Error generating caption: {e}]"
# cleanup
try:
os.remove(img_path)
except Exception:
pass
# store in history
if user_id not in self.user_chat_histories:
self.user_chat_histories[user_id] = []
self.user_chat_histories[user_id].append({"timestamp": datetime.now().isoformat(), "role": "user", "text": "[Image]", "language": "en"})
self.user_chat_histories[user_id].append({"timestamp": datetime.now().isoformat(), "role": "bot", "text": f"Image description: {description}", "language": "en"})
self._save_chat_histories()
return description
# ----------------------
# Voice reply (TTS)
# ----------------------
async def generate_voice_reply(self, text: str, user_id: int, fmt: str = "ogg") -> str:
"""
Generate TTS audio reply using gTTS (or swap out to another TTS if you have).
Returns path to audio file.
"""
mp3_path = _tmp_path(".mp3")
out_path = _tmp_path(f".{fmt}")
try:
tts = gTTS(text)
tts.save(mp3_path)
# convert to requested format using ffmpeg (ogg/opus for Telegram voice)
ffmpeg_path = ffmpeg.get_ffmpeg_exe()
if fmt == "ogg":
# convert mp3 -> ogg (opus)
subprocess.run([ffmpeg_path, "-y", "-i", mp3_path, "-c:a", "libopus", out_path], check=True)
elif fmt == "wav":
subprocess.run([ffmpeg_path, "-y", "-i", mp3_path, out_path], check=True)
else:
# default: return mp3
shutil.move(mp3_path, out_path)
except Exception as e:
# fallback: raise
raise RuntimeError(f"TTS failed: {e}")
finally:
try:
if os.path.exists(mp3_path) and os.path.exists(out_path) and mp3_path != out_path:
os.remove(mp3_path)
except Exception:
pass
return out_path
# ----------------------
# Image generation (text -> image)
# ----------------------
async def generate_image_from_text(self, prompt: str, user_id: int, width: int = 512, height: int = 512, steps: int = 30) -> str:
self._load_sd()
if self._sd_pipe is None:
raise RuntimeError("Stable Diffusion pipeline not available.")
out_path = _tmp_path(".png")
try:
# diffusion pipeline uses CPU/GPU internally
result = self._sd_pipe(prompt, num_inference_steps=steps, height=height, width=width)
image = result.images[0]
image.save(out_path)
except Exception as e:
raise RuntimeError(f"Image generation failed: {e}")
return out_path
# ----------------------
# Image editing (inpainting)
# ----------------------
async def edit_image_inpaint(self, image_file, mask_file=None, prompt: str = "", user_id: int = 0) -> str:
self._load_sd()
if self._sd_inpaint is None:
raise RuntimeError("Inpainting pipeline not available.")
# Save files
img_path = _tmp_path(".png")
tf = await image_file.get_file()
await tf.download_to_drive(img_path)
if mask_file:
mask_path = _tmp_path(".png")
m_tf = await mask_file.get_file()
await m_tf.download_to_drive(mask_path)
mask_image = Image.open(mask_path).convert("L")
else:
# default mask (edit entire image)
mask_image = Image.new("L", Image.open(img_path).size, color=255)
mask_path = None
init_image = Image.open(img_path).convert("RGB")
# run inpaint
out_path = _tmp_path(".png")
try:
result = self._sd_inpaint(prompt=prompt if prompt else " ", image=init_image, mask_image=mask_image, guidance_scale=7.5, num_inference_steps=30)
edited = result.images[0]
edited.save(out_path)
except Exception as e:
raise RuntimeError(f"Inpainting failed: {e}")
finally:
try:
os.remove(img_path)
if mask_path:
os.remove(mask_path)
except Exception:
pass
return out_path
# ----------------------
# Video processing: extract audio, frames, summarize
# ----------------------
async def process_video(self, video_file, user_id: int, max_frames: int = 4) -> dict:
"""
Accepts uploaded video file, extracts audio (for transcription) and sample frames,
returns summary: {duration, fps, transcriptions, captions}
"""
vid_path = _tmp_path(".mp4")
tf = await video_file.get_file()
await tf.download_to_drive(vid_path)
# Extract audio
audio_path = _tmp_path(".wav")
try:
clip = mp.VideoFileClip(vid_path)
clip.audio.write_audiofile(audio_path, logger=None)
duration = clip.duration
fps = clip.fps
except Exception as e:
raise RuntimeError(f"Video processing failed: {e}")
# Transcribe audio using the same process_voice_message flow: use SpeechRecognition or integrate Whisper
# For now we'll try SpeechRecognition on the audio
recognizer = sr.Recognizer()
with sr.AudioFile(audio_path) as source:
audio = recognizer.record(source)
transcribed = ""
try:
transcribed = recognizer.recognize_google(audio)
except Exception:
transcribed = ""
# Extract a few frames evenly
frames = []
try:
clip_reader = imageio.get_reader(vid_path, "ffmpeg")
total_frames = clip_reader.count_frames()
step = max(1, total_frames // max_frames)
for i in range(0, total_frames, step):
try:
frame = clip_reader.get_data(i)
pil = Image.fromarray(frame)
ppath = _tmp_path(".jpg")
pil.save(ppath)
frames.append(ppath)
if len(frames) >= max_frames:
break
except Exception:
continue
clip_reader.close()
except Exception:
pass
# Use image captioner on the frames
captions = []
if frames:
self._load_image_captioner()
for p in frames:
try:
img = Image.open(p).convert("RGB")
c = self._image_captioner(img)[0]["generated_text"]
captions.append(c)
except Exception:
captions.append("")
finally:
try:
os.remove(p)
except Exception:
pass
# cleanup
try:
os.remove(vid_path)
os.remove(audio_path)
except Exception:
pass
return {"duration": duration, "fps": fps, "transcription": transcribed, "captions": captions}
# ----------------------
# File processing (PDF, DOCX, TXT, CSV)
# ----------------------
async def process_file(self, file_obj, user_id: int) -> dict:
"""
Reads a file, extracts text (supports PDF/TXT/CSV/DOCX if python-docx added),
and returns a short summary.
"""
# Save file
fpath = _tmp_path()
tf = await file_obj.get_file()
await tf.download_to_drive(fpath)
lower = fpath.lower()
text = ""
if fpath.endswith(".pdf"):
try:
doc = fitz.open(fpath)
for page in doc:
text += page.get_text()
except Exception as e:
text = f"[PDF read error: {e}]"
elif fpath.endswith((".txt", ".csv")):
try:
with open(fpath, "r", encoding="utf-8", errors="ignore") as fh:
text = fh.read()
except Exception as e:
text = f"[File read error: {e}]"
elif fpath.endswith(".docx"):
try:
import docx
doc = docx.Document(fpath)
text = "\n".join([p.text for p in doc.paragraphs])
except Exception as e:
text = f"[DOCX read error: {e}]"
else:
text = "[Unsupported file type]"
# Summarize: simple heuristic or use translator/chat model to summarize (but that costs compute)
summary = text[:300] + ("..." if len(text) > 300 else "")
try:
os.remove(fpath)
except Exception:
pass
return {"summary": summary, "full_text_length": len(text)}
# ----------------------
# Code assistance: generate / explain code
# ----------------------
async def code_complete(self, prompt: str, max_tokens: int = 512, temperature: float = 0.2) -> str:
"""
Uses a code LLM (StarCoder or similar) to complete or generate code.
"""
self._load_code_model()
if not self._code_model or not self._code_tokenizer:
raise RuntimeError("Code model not available.")
input_ids = self._code_tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
gen = self._code_model.generate(input_ids, max_new_tokens=max_tokens, do_sample=False)
out = self._code_tokenizer.decode(gen[0], skip_special_tokens=True)
return out
# ----------------------
# Optional: execute Python code in sandbox (WARNING: security risk)
# ----------------------
async def execute_python_code(self, code: str, timeout: int = 5) -> dict:
"""
Execute Python code in a very limited sandbox subprocess.
WARNING: Running arbitrary code is dangerous. Use only with trusted inputs or stronger sandboxing (containers).
"""
# Create temp dir
d = tempfile.mkdtemp()
file_path = os.path.join(d, "main.py")
with open(file_path, "w", encoding="utf-8") as f:
f.write(code)
# run with timeout
try:
proc = await asyncio.create_subprocess_exec(
"python3", file_path,
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE,
)
try:
stdout, stderr = await asyncio.wait_for(proc.communicate(), timeout=timeout)
except asyncio.TimeoutError:
proc.kill()
return {"error": "Execution timed out"}
return {"stdout": stdout.decode("utf-8", errors="ignore"), "stderr": stderr.decode("utf-8", errors="ignore")}
finally:
try:
shutil.rmtree(d)
except Exception:
pass
|