multimodal_module / multimodal_module.py
Princeaka's picture
Rename mulltimodal_module.py to multimodal_module.py
65beca9 verified
# multimodal_module.py
import os
import pickle
import subprocess
import tempfile
import shutil
import asyncio
import logging
from datetime import datetime
from typing import Dict, List, Optional, Any, Union
import uuid
import numpy as np
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger("MultiModalModule")
# Space-specific environment configuration
os.environ["HF_HUB_DISABLE_TELEMETRY"] = "1"
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Core ML Imports
import torch
from transformers import (
pipeline,
AutoModelForSeq2SeqLM,
AutoTokenizer,
Wav2Vec2Processor,
Wav2Vec2ForSequenceClassification,
AutoModelForCausalLM
)
from diffusers import (
StableDiffusionPipeline,
StableDiffusionInpaintPipeline
)
from huggingface_hub import hf_hub_download, snapshot_download
# Audio Processing
import librosa
import soundfile as sf
from gtts import gTTS
import speech_recognition as sr
import webrtcvad
# Image/Video Processing
from PIL import Image
import imageio
import imageio_ffmpeg
import moviepy.editor as mp
import cv2
# Document Processing
import fitz # PyMuPDF
from langdetect import detect, DetectorFactory
DetectorFactory.seed = 0
# Configuration
USE_SAFETY_CHECKER = False
MAX_HISTORY_LENGTH = 100
TEMP_DIR = "tmp"
MODEL_CACHE_DIR = "model_cache"
class MultiModalChatModule:
"""Complete multimodal module optimized for Hugging Face Spaces"""
def __init__(self, chat_history_file: str = "chat_histories.pkl"):
"""Initialize with Space optimizations"""
# Create required directories
os.makedirs(TEMP_DIR, exist_ok=True)
os.makedirs(MODEL_CACHE_DIR, exist_ok=True)
# Device configuration
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.torch_dtype = torch.float16 if "cuda" in self.device else torch.float32
logger.info(f"Initialized on {self.device.upper()} with dtype {self.torch_dtype}")
# Model registry
self.model_names = {
"voice_emotion_processor": "facebook/hubert-large-ls960-ft",
"voice_emotion_model": "superb/hubert-base-superb-er",
"translation_model": "facebook/nllb-200-distilled-600M",
"chatbot_tokenizer": "facebook/blenderbot-400M-distill",
"chatbot_model": "facebook/blenderbot-400M-distill",
"image_captioner": "Salesforce/blip-image-captioning-base",
"sd_inpaint": "runwayml/stable-diffusion-inpainting",
"sd_text2img": "runwayml/stable-diffusion-v1-5",
"code_model": "bigcode/starcoder",
}
# Model placeholders
self._voice_processor = None
self._voice_emotion_model = None
self._translator = None
self._chat_tokenizer = None
self._chat_model = None
self._image_captioner = None
self._sd_pipe = None
self._sd_inpaint = None
self._code_tokenizer = None
self._code_model = None
# Helpers
self._sr_recognizer = sr.Recognizer()
self.vad = webrtcvad.Vad(3)
self.chat_history_file = chat_history_file
self.user_chat_histories = self._load_chat_histories()
# Load tracking
self._loaded = {
"voice": False,
"translation": False,
"chat": False,
"image_caption": False,
"sd": False,
"code": False,
}
# ----------------------
# Core Utilities
# ----------------------
def _tmp_path(self, suffix: str = "") -> str:
"""Generate space-compatible temp file path"""
path = os.path.join(TEMP_DIR, f"{uuid.uuid4().hex}{suffix}")
os.makedirs(os.path.dirname(path), exist_ok=True)
return path
def _cleanup(self, *paths: str) -> None:
"""Safely remove files/directories"""
for path in paths:
try:
if path and os.path.exists(path):
if os.path.isfile(path):
os.remove(path)
elif os.path.isdir(path):
shutil.rmtree(path)
except Exception as e:
logger.warning(f"Cleanup failed for {path}: {e}")
def _load_chat_histories(self) -> Dict[int, List[dict]]:
"""Load chat histories from file"""
try:
with open(self.chat_history_file, "rb") as f:
return pickle.load(f)
except Exception as e:
logger.warning(f"Failed loading chat history: {e}")
return {}
def _save_chat_histories(self) -> None:
"""Persist chat histories to file"""
try:
with open(self.chat_history_file, "wb") as f:
pickle.dump(self.user_chat_histories, f)
except Exception as e:
logger.error(f"Failed saving chat history: {e}")
def _update_history(self, user_id: int, role: str, content: Any, lang: str = "en") -> None:
"""Update conversation history"""
if user_id not in self.user_chat_histories:
self.user_chat_histories[user_id] = []
self.user_chat_histories[user_id].append({
"timestamp": datetime.now().isoformat(),
"role": role,
"content": content,
"language": lang
})
# Enforce max history length
self.user_chat_histories[user_id] = self.user_chat_histories[user_id][-MAX_HISTORY_LENGTH:]
self._save_chat_histories()
# ----------------------
# Model Loading
# ----------------------
def _load_voice_models(self) -> None:
"""Load voice processing models"""
if self._loaded["voice"]:
return
try:
logger.info("Loading voice models...")
self._voice_processor = Wav2Vec2Processor.from_pretrained(
self.model_names["voice_emotion_processor"],
cache_dir=MODEL_CACHE_DIR
)
self._voice_emotion_model = Wav2Vec2ForSequenceClassification.from_pretrained(
self.model_names["voice_emotion_model"],
cache_dir=MODEL_CACHE_DIR
).to(self.device)
self._loaded["voice"] = True
logger.info("Voice models loaded successfully")
except Exception as e:
logger.error(f"Failed loading voice models: {e}")
def _load_translation(self) -> None:
"""Load translation pipeline"""
if self._loaded["translation"]:
return
try:
logger.info("Loading translation model...")
device = 0 if self.device == "cuda" else -1
self._translator = pipeline(
"translation",
model=self.model_names["translation_model"],
device=device,
cache_dir=MODEL_CACHE_DIR
)
self._loaded["translation"] = True
logger.info("Translation model loaded successfully")
except Exception as e:
logger.error(f"Failed loading translation model: {e}")
def _load_chatbot(self) -> None:
"""Load chatbot models"""
if self._loaded["chat"]:
return
try:
logger.info("Loading chatbot models...")
self._chat_tokenizer = AutoTokenizer.from_pretrained(
self.model_names["chatbot_tokenizer"],
cache_dir=MODEL_CACHE_DIR
)
self._chat_model = AutoModelForSeq2SeqLM.from_pretrained(
self.model_names["chatbot_model"],
cache_dir=MODEL_CACHE_DIR
).to(self.device)
self._loaded["chat"] = True
logger.info("Chatbot models loaded successfully")
except Exception as e:
logger.error(f"Failed loading chatbot models: {e}")
def _load_image_captioner(self) -> None:
"""Load image captioning model"""
if self._loaded["image_caption"]:
return
try:
logger.info("Loading image captioner...")
device = 0 if self.device == "cuda" else -1
self._image_captioner = pipeline(
"image-to-text",
model=self.model_names["image_captioner"],
device=device,
cache_dir=MODEL_CACHE_DIR
)
self._loaded["image_caption"] = True
logger.info("Image captioner loaded successfully")
except Exception as e:
logger.error(f"Failed loading image captioner: {e}")
def _load_sd(self) -> None:
"""Load Stable Diffusion models"""
if self._loaded["sd"]:
return
try:
logger.info("Loading Stable Diffusion models...")
# Text-to-image
self._sd_pipe = StableDiffusionPipeline.from_pretrained(
self.model_names["sd_text2img"],
torch_dtype=self.torch_dtype,
safety_checker=None if not USE_SAFETY_CHECKER else None,
cache_dir=MODEL_CACHE_DIR
).to(self.device)
# Inpainting
self._sd_inpaint = StableDiffusionInpaintPipeline.from_pretrained(
self.model_names["sd_inpaint"],
torch_dtype=self.torch_dtype,
cache_dir=MODEL_CACHE_DIR
).to(self.device)
self._loaded["sd"] = True
logger.info("Stable Diffusion models loaded successfully")
except Exception as e:
logger.error(f"Failed loading Stable Diffusion models: {e}")
self._sd_pipe = None
self._sd_inpaint = None
def _load_code_model(self) -> None:
"""Load code generation model"""
if self._loaded["code"]:
return
try:
logger.info("Loading code model...")
self._code_tokenizer = AutoTokenizer.from_pretrained(
self.model_names["code_model"],
cache_dir=MODEL_CACHE_DIR
)
self._code_model = AutoModelForCausalLM.from_pretrained(
self.model_names["code_model"],
cache_dir=MODEL_CACHE_DIR
).to(self.device)
self._loaded["code"] = True
logger.info("Code model loaded successfully")
except Exception as e:
logger.error(f"Failed loading code model: {e}")
self._code_tokenizer = None
self._code_model = None
# ----------------------
# Audio Processing
# ----------------------
async def analyze_voice_emotion(self, audio_path: str) -> str:
"""Analyze emotion from voice audio"""
self._load_voice_models()
if not self._voice_processor or not self._voice_emotion_model:
return "unknown"
try:
speech, sr = librosa.load(audio_path, sr=16000)
inputs = self._voice_processor(
speech,
sampling_rate=sr,
return_tensors="pt",
padding=True
).to(self.device)
with torch.no_grad():
logits = self._voice_emotion_model(**inputs).logits
emotions = {
0: "happy", 1: "sad", 2: "angry",
3: "fearful", 4: "calm", 5: "surprised"
}
return emotions.get(torch.argmax(logits).item(), "unknown")
except Exception as e:
logger.error(f"Voice emotion analysis failed: {e}")
return "error"
async def process_voice_message(self, voice_file, user_id: int) -> Dict[str, Any]:
"""Process voice message to text with emotion analysis"""
ogg_path = self._tmp_path(".ogg")
wav_path = self._tmp_path(".wav")
try:
# Save and convert audio
await voice_file.download_to_drive(ogg_path)
# Convert to WAV
ffmpeg_path = imageio_ffmpeg.get_ffmpeg_exe()
cmd = [
ffmpeg_path, "-y", "-i", ogg_path,
"-ar", "16000", "-ac", "1", wav_path
]
subprocess.run(cmd, check=True, capture_output=True)
# Analyze audio
speech, sr = librosa.load(wav_path, sr=16000)
# Voice Activity Detection
is_speech = self.vad.is_speech(
(speech * 32767).astype(np.int16).tobytes(),
sample_rate=sr
)
# Transcription
text = ""
lang = "en"
if is_speech:
with sr.AudioFile(wav_path) as source:
audio = self._sr_recognizer.record(source)
try:
text = self._sr_recognizer.recognize_google(audio, language="en-US")
except sr.UnknownValueError:
pass
except Exception as e:
logger.warning(f"Speech recognition failed: {e}")
# Emotion analysis
emotion = await self.analyze_voice_emotion(wav_path) if is_speech else "no_speech"
# Update history
result = {
"text": text,
"language": lang,
"emotion": emotion,
"is_speech": is_speech
}
self._update_history(user_id, "user", result, lang)
return result
except Exception as e:
logger.error(f"Voice message processing failed: {e}")
return {"error": str(e)}
finally:
self._cleanup(ogg_path, wav_path)
async def generate_voice_reply(self, text: str, user_id: int, fmt: str = "ogg") -> str:
"""Generate audio from text (TTS)"""
mp3_path = self._tmp_path(".mp3")
out_path = self._tmp_path(f".{fmt}")
try:
# Generate TTS
tts = gTTS(text=text, lang='en')
tts.save(mp3_path)
# Convert format
ffmpeg_path = imageio_ffmpeg.get_ffmpeg_exe()
if fmt == "ogg":
subprocess.run([
ffmpeg_path, "-y", "-i", mp3_path,
"-c:a", "libopus", out_path
], check=True)
elif fmt == "wav":
subprocess.run([
ffmpeg_path, "-y", "-i", mp3_path, out_path
], check=True)
else:
shutil.move(mp3_path, out_path)
# Update history
self._update_history(user_id, "assistant", f"[Voice reply: {fmt}]")
return out_path
except Exception as e:
logger.error(f"Voice reply generation failed: {e}")
raise RuntimeError(f"TTS failed: {e}")
finally:
if fmt != "mp3" and os.path.exists(mp3_path):
self._cleanup(mp3_path)
# ----------------------
# Text Processing
# ----------------------
async def generate_response(self, text: str, user_id: int, lang: str = "en") -> str:
"""Generate conversational response with context"""
self._load_chatbot()
self._load_translation()
# Update history
self._update_history(user_id, "user", text, lang)
# Prepare context
context = []
for msg in self.user_chat_histories[user_id][-5:]:
if msg["language"] != "en":
try:
translated = self._translator(msg["content"])[0]["translation_text"]
context.append(f"{msg['role']}: {translated}")
except Exception:
context.append(f"{msg['role']}: {msg['content']}")
else:
context.append(f"{msg['role']}: {msg['content']}")
# Generate response
input_text = f"Context:\n{' '.join(context)}\nUser: {text}"
inputs = self._chat_tokenizer(input_text, return_tensors="pt").to(self.device)
try:
outputs = self._chat_model.generate(
**inputs,
max_new_tokens=200,
do_sample=True,
temperature=0.7
)
response = self._chat_tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
logger.error(f"Response generation failed: {e}")
response = "I couldn't generate a response. Please try again."
# Translate if needed
if lang != "en":
try:
response = self._translator(response)[0]["translation_text"]
except Exception:
pass
# Update history
self._update_history(user_id, "assistant", response, lang)
return response
# ----------------------
# Image Processing
# ----------------------
async def process_image_message(self, image_file, user_id: int) -> str:
"""Generate caption for an image"""
img_path = self._tmp_path(".jpg")
try:
# Save and load image
await image_file.download_to_drive(img_path)
image = Image.open(img_path).convert("RGB")
# Generate caption
self._load_image_captioner()
caption = self._image_captioner(image)[0]["generated_text"]
# Update history
self._update_history(user_id, "user", "[Image]", "en")
self._update_history(user_id, "assistant", f"Image description: {caption}", "en")
return caption
except Exception as e:
logger.error(f"Image processing failed: {e}")
return f"Error processing image: {str(e)}"
finally:
self._cleanup(img_path)
async def generate_image_from_text(self, prompt: str, user_id: int,
width: int = 512, height: int = 512,
steps: int = 30) -> str:
"""Generate image from text prompt"""
self._load_sd()
if not self._sd_pipe:
raise RuntimeError("Image generation unavailable")
out_path = self._tmp_path(".png")
try:
# Generate image
result = self._sd_pipe(
prompt,
num_inference_steps=steps,
height=height,
width=width
)
result.images[0].save(out_path)
# Update history
self._update_history(user_id, "user", f"[Image request: {prompt}]", "en")
self._update_history(user_id, "assistant", f"[Generated image]", "en")
return out_path
except Exception as e:
logger.error(f"Image generation failed: {e}")
raise RuntimeError(f"Image generation failed: {e}")
async def edit_image_inpaint(self, image_file, mask_file=None,
prompt: str = "", user_id: int = 0) -> str:
"""Edit image using inpainting"""
self._load_sd()
if not self._sd_inpaint:
raise RuntimeError("Image editing unavailable")
img_path = self._tmp_path(".png")
mask_path = self._tmp_path("_mask.png") if mask_file else None
out_path = self._tmp_path("_edited.png")
try:
# Save inputs
await image_file.download_to_drive(img_path)
if mask_file:
await mask_file.download_to_drive(mask_path)
# Prepare images
init_image = Image.open(img_path).convert("RGB")
mask_image = Image.open(mask_path).convert("L") if mask_path else Image.new("L", init_image.size, 255)
# Inpaint
result = self._sd_inpaint(
prompt=prompt if prompt else " ",
image=init_image,
mask_image=mask_image,
guidance_scale=7.5,
num_inference_steps=30
)
result.images[0].save(out_path)
# Update history
self._update_history(user_id, "user", "[Image edit request]", "en")
self._update_history(user_id, "assistant", "[Edited image]", "en")
return out_path
except Exception as e:
logger.error(f"Image editing failed: {e}")
raise RuntimeError(f"Inpainting failed: {e}")
finally:
self._cleanup(img_path, mask_path)
# ----------------------
# Video Processing
# ----------------------
async def process_video(self, video_file, user_id: int, max_frames: int = 4) -> Dict[str, Any]:
"""Process video file to extract audio and keyframes"""
vid_path = self._tmp_path(".mp4")
audio_path = self._tmp_path(".wav")
try:
# Save video
await video_file.download_to_drive(vid_path)
# Extract audio
clip = mp.VideoFileClip(vid_path)
clip.audio.write_audiofile(audio_path, logger=None)
duration = clip.duration
fps = clip.fps
# Transcribe audio
transcribed = ""
try:
with sr.AudioFile(audio_path) as source:
audio = self._sr_recognizer.record(source)
transcribed = self._sr_recognizer.recognize_google(audio)
except Exception as e:
logger.warning(f"Audio transcription failed: {e}")
# Extract frames
frames = []
captions = []
try:
reader = imageio.get_reader(vid_path)
total_frames = reader.count_frames()
step = max(1, total_frames // max_frames)
for i in range(0, total_frames, step):
try:
frame = reader.get_data(i)
frame_path = self._tmp_path(f"_frame{i}.jpg")
Image.fromarray(frame).save(frame_path)
frames.append(frame_path)
if len(frames) >= max_frames:
break
except Exception:
continue
# Generate captions
if frames and self._load_image_captioner():
for frame_path in frames:
try:
caption = self._image_captioner(Image.open(frame_path))[0]["generated_text"]
captions.append(caption)
except Exception:
captions.append("")
finally:
self._cleanup(frame_path)
except Exception as e:
logger.warning(f"Frame extraction failed: {e}")
# Update history
result = {
"duration": duration,
"fps": fps,
"transcription": transcribed,
"captions": captions
}
self._update_history(user_id, "user", "[Video upload]", "en")
self._update_history(user_id, "assistant", result, "en")
return result
except Exception as e:
logger.error(f"Video processing failed: {e}")
return {"error": str(e)}
finally:
self._cleanup(vid_path, audio_path)
# ----------------------
# File Processing
# ----------------------
async def process_file(self, file_obj, user_id: int) -> Dict[str, Any]:
"""Process document files (PDF, DOCX, TXT)"""
fpath = self._tmp_path()
try:
# Save file
await file_obj.download_to_drive(fpath)
# Read based on type
text = ""
if fpath.lower().endswith(".pdf"):
try:
with fitz.open(fpath) as doc:
text = "\n".join([page.get_text() for page in doc])
except Exception as e:
text = f"[PDF error: {e}]"
elif fpath.lower().endswith((".txt", ".csv")):
try:
with open(fpath, "r", encoding="utf-8", errors="ignore") as f:
text = f.read()
except Exception as e:
text = f"[Text error: {e}]"
elif fpath.lower().endswith(".docx"):
try:
import docx
doc = docx.Document(fpath)
text = "\n".join([p.text for p in doc.paragraphs])
except Exception as e:
text = f"[DOCX error: {e}]"
else:
text = "[Unsupported file type]"
# Summarize
summary = text[:500] + ("..." if len(text) > 500 else "")
# Update history
result = {
"summary": summary,
"length": len(text),
"type": os.path.splitext(fpath)[1]
}
self._update_history(user_id, "user", f"[File upload: {result['type']}]", "en")
self._update_history(user_id, "assistant", result, "en")
return result
except Exception as e:
logger.error(f"File processing failed: {e}")
return {"error": str(e)}
finally:
self._cleanup(fpath)
# ----------------------
# Code Processing
# ----------------------
async def code_complete(self, prompt: str, max_tokens: int = 512,
temperature: float = 0.2) -> str:
"""Generate code completions"""
self._load_code_model()
if not self._code_model or not self._code_tokenizer:
raise RuntimeError("Code model not available")
try:
inputs = self._code_tokenizer(prompt, return_tensors="pt").to(self.device)
outputs = self._code_model.generate(
**inputs,
max_new_tokens=max_tokens,
temperature=temperature,
do_sample=True
)
return self._code_tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
logger.error(f"Code completion failed: {e}")
raise RuntimeError(f"Code generation error: {e}")
async def execute_python_code(self, code: str, timeout: int = 5) -> Dict[str, str]:
"""Execute Python code in sandbox (DANGER: Unsecure)"""
temp_dir = self._tmp_path()
script_path = os.path.join(temp_dir, "script.py")
try:
# Create temp dir
os.makedirs(temp_dir, exist_ok=True)
# Write script
with open(script_path, "w") as f:
f.write(code)
# Execute
proc = await asyncio.create_subprocess_exec(
"python3", script_path,
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE
)
try:
stdout, stderr = await asyncio.wait_for(proc.communicate(), timeout=timeout)
return {
"stdout": stdout.decode("utf-8", errors="ignore"),
"stderr": stderr.decode("utf-8", errors="ignore")
}
except asyncio.TimeoutError:
proc.kill()
return {"error": "Execution timed out"}
except Exception as e:
logger.error(f"Code execution failed: {e}")
return {"error": str(e)}
finally:
self._cleanup(temp_dir)