Spaces:
Sleeping
Sleeping
File size: 1,246 Bytes
ca1537a 188192e ff6c924 ca1537a ff6c924 ca1537a 947d949 ff6c924 947d949 ff6c924 3bea97a ff6c924 3bea97a ff6c924 188192e 947d949 ff6c924 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
import gradio as gr
from rag_utils import load_faiss_index, get_embedding_model, query_index, nettoyer_context, generate_answer
index, documents = load_faiss_index()
embedder = get_embedding_model()
def respond(message, history):
try:
context = query_index(message, index, documents, embedder)
cleaned_context = nettoyer_context("\n".join(context))
answer = generate_answer(message, cleaned_context)
except Exception as e:
answer = f"❌ Erreur : {str(e)}"
history.append((message, answer))
return "", history
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="yellow")) as demo:
gr.Markdown("# 🎓 EduPilot – Chatbot d'Orientation IA")
gr.Markdown("👋 Bienvenue ! Je suis **EduPilot**, ton conseiller scolaire IA. Pose-moi une question sur les métiers ou les formations.")
chatbot = gr.Chatbot(label="Conseiller IA")
state = gr.State([])
with gr.Row():
msg = gr.Textbox(placeholder="Exemple : Comment devenir vétérinaire ?", show_label=False, scale=8)
btn = gr.Button("Envoyer", scale=1)
btn.click(respond, [msg, state], [msg, chatbot, state])
msg.submit(respond, [msg, state], [msg, chatbot, state])
demo.launch() |