File size: 13,910 Bytes
10d0bac be85e86 2619083 15b2d37 be85e86 15b2d37 2619083 15b2d37 be85e86 15b2d37 be85e86 513894a 15b2d37 be85e86 15b2d37 af5ac46 15b2d37 af5ac46 15b2d37 af5ac46 be85e86 6c809c9 be85e86 6c809c9 be85e86 a2f75f4 6c809c9 a2f75f4 6c809c9 a2f75f4 6c809c9 a2f75f4 6c809c9 a2f75f4 be85e86 af5ac46 be85e86 15b2d37 be85e86 af5ac46 be85e86 af5ac46 be85e86 15b2d37 be85e86 af5ac46 be85e86 15b2d37 be85e86 513894a 6c809c9 af5ac46 6c809c9 513894a 6c809c9 513894a 6c809c9 513894a 6c809c9 be85e86 6c809c9 be85e86 6c809c9 be85e86 513894a 6c809c9 be85e86 6c809c9 be85e86 6c809c9 be85e86 6c809c9 513894a 6c809c9 15b2d37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import streamlit as st
from streamlit_folium import st_folium
import folium
from folium.plugins import Draw
import pandas as pd
import geopandas as gpd
from shapely.geometry import Polygon, Point
import numpy as np
import re # For parsing STATEDAREA
st.set_page_config(layout="wide", page_title="Multiplex Coop Housing Filter")
st.title("🗺️ Multiplex Coop Housing Filter (Hugging Face Data)")
st.write("This app uses the `ProjectMultiplexCoop/PropertyBoundaries` dataset from Hugging Face. Draw a polygon on the map to spatially filter properties. Use the form below to apply additional filters based on property attributes. **Note: FSI, Building Coverage, Height, and Stories are synthetic for demonstration as they are not directly available in the dataset.**")
# --- Configuration Constants ---
MAX_ROWS_DATAFRAME_DISPLAY = 1000 # Max rows to show in st.dataframe
MAX_MAP_FEATURES_DISPLAY = 5000 # Max features to plot on the Folium map to prevent MessageSizeError
# --- 1. Load Data from Hugging Face and Process ---
@st.cache_data
def load_and_process_data():
"""
Loads the geospatial data from Hugging Face, processes relevant columns,
generates synthetic data for missing attributes, and re-projects for centroid calculation.
"""
try:
gdf = gpd.read_parquet("hf://datasets/ProjectMultiplexCoop/PropertyBoundaries/Property_Boundaries_4326.parquet")
except Exception as e:
st.error(f"Failed to load data from Hugging Face. Please ensure `huggingface_hub`, `geopandas`, `fiona`, and `pyproj` are installed. Error: {e}")
st.stop()
# Process STATEDAREA to numeric (Lot Area in Sq Metres)
def parse_stated_area(area_str):
if pd.isna(area_str):
return np.nan
match = re.search(r'(\d+\.?\d*)\s*sq\.m', str(area_str))
if match:
return float(match.group(1))
return np.nan
gdf['zn_area'] = gdf['STATEDAREA'].apply(parse_stated_area)
# Map FEATURE_TYPE to zn_type (Zoning Type)
gdf['zn_type'] = gdf['FEATURE_TYPE']
# Generate synthetic data for attributes not present in the Hugging Face dataset
num_rows = len(gdf)
gdf['fsi_total'] = np.round(np.random.uniform(0.5, 3.0, num_rows), 2)
gdf['prcnt_cver'] = np.random.randint(20, 70, num_rows)
gdf['height_metres'] = np.round(np.random.uniform(5, 30, num_rows), 1)
gdf['stories'] = np.random.randint(2, 10, num_rows)
# Add unique ID and a display name
gdf['id'] = range(1, num_rows + 1)
gdf['name'] = gdf['PARCELID'].apply(lambda x: f"Parcel {x}")
# Ensure geometries are valid for centroid calculation and plotting
gdf['geometry'] = gdf['geometry'].buffer(0)
# --- IMPORTANT: Re-project for accurate centroid calculation ---
# Convert to a projected CRS (e.g., Web Mercator EPSG:3857) for accurate centroid calculation
gdf_projected = gdf.to_crs(epsg=3857)
# Calculate centroids on the projected CRS
gdf['centroid_x_proj'] = gdf_projected.geometry.centroid.x
gdf['centroid_y_proj'] = gdf_projected.geometry.centroid.y
# Convert centroids back to geographic CRS (EPSG:4326) for Folium plotting
centroids_gdf = gpd.GeoDataFrame(
gdf.index,
geometry=gpd.points_from_xy(gdf['centroid_x_proj'], gdf['centroid_y_proj'], crs="EPSG:3857")
).to_crs(epsg=4326)
gdf['latitude'] = centroids_gdf.geometry.y
gdf['longitude'] = centroids_gdf.geometry.x
# Select and reorder relevant columns for display and filtering
df_processed = gdf[[
'id', 'name', 'latitude', 'longitude', 'geometry',
'zn_type', 'zn_area', 'fsi_total', 'prcnt_cver', 'height_metres', 'stories',
'PARCELID', # Original Parcel ID for reference
'ADDRESS_NUMBER', 'LINEAR_NAME_FULL' # For detailed address in tooltips
]].copy()
return df_processed
df = load_and_process_data()
# Initialize filtered_df with the full dataframe for initial state
# This will be updated based on spatial and attribute filters
filtered_df = df.copy()
# --- 2. Map for Drawing (now in an expander) ---
with st.expander("Draw a Polygon on the Map", expanded=False):
# Center the map around the mean of the actual data's centroids
m = folium.Map(location=[df['latitude'].mean(), df['longitude'].mean()], zoom_start=12)
# Add drawing tools to the map
draw = Draw(
export=True,
filename="drawn_polygon.geojson",
position="topleft",
draw_options={
"polyline": False, "rectangle": False, "circlemarker": False,
"circle": False, "marker": False,
"polygon": {
"allowIntersection": False,
"drawError": {"color": "#e0115f", "message": "Oups!"},
"shapeOptions": {"color": "#ef233c", "fillOpacity": 0.5},
},
},
edit_options={"edit": False, "remove": True},
)
m.add_child(draw)
st.info("Draw a polygon on the map to spatially filter properties. The filtered results will appear below.")
output = st_folium(m, width=1000, height=600, returned_objects=["all_draw_features"])
polygon_drawn = False
shapely_polygon = None
polygon_coords = None
if output and output["all_draw_features"]:
polygons = [
feature["geometry"]["coordinates"]
for feature in output["all_draw_features"]
if feature["geometry"]["type"] == "Polygon"
]
if polygons:
polygon_coords = polygons[-1][0] # Get the coordinates of the last drawn polygon
# Shapely Polygon expects (lon, lat) tuples, Folium provides (lat, lon)
shapely_polygon = Polygon([(lon, lat) for lat, lon in polygon_coords])
polygon_drawn = True
# Apply spatial filter to the full dataframe based on centroid containment
filtered_df = df[
df.apply(
lambda row: shapely_polygon.contains(Point(row['longitude'], row['latitude'])),
axis=1
)
].copy()
st.success(f"Initially filtered {len(filtered_df)} properties within the drawn polygon.")
else:
st.info("No polygon drawn yet. Draw a polygon on the map to spatially filter properties.")
else:
st.info("No polygon drawn yet. Draw a polygon on the map to spatially filter properties.")
# --- 3. Attribute Filtering Form ---
st.subheader("Filter Property Attributes")
with st.form("attribute_filters"):
col1, col2 = st.columns(2)
with col1:
all_zoning_types = ['All Resdidential Zoning (0, 101, 6)'] + sorted(df['zn_type'].unique().tolist())
selected_zn_type = st.selectbox("Zoning Type", all_zoning_types, key="zn_type_select")
min_zn_area = st.number_input(
"Minimum Lot Area in Sq Metres",
min_value=float(df['zn_area'].min() if pd.notna(df['zn_area'].min()) else 0),
value=float(df['zn_area'].min() if pd.notna(df['zn_area'].min()) else 0),
step=100.0,
key="zn_area_input"
)
min_fsi_total = st.number_input("Minimum Floor Space Index (FSI)", min_value=0.0, value=0.0, step=0.1, format="%.2f", key="fsi_total_input")
with col2:
max_prcnt_cver = st.number_input("Maximum Building Percent Coverage (%)", min_value=0, value=100, step=1, key="prcnt_cver_input")
height_stories_option = st.radio(
"Filter by",
("Height", "Stories"),
index=0,
key="height_stories_radio"
)
if height_stories_option == "Height":
min_height_value = st.number_input("Minimum Height in Metres", min_value=0.0, value=0.0, step=0.1, format="%.1f", key="height_input")
else:
min_stories_value = st.number_input("Minimum Stories", min_value=0, value=0, step=1, key="stories_input")
submitted = st.form_submit_button("Apply Attribute Filters")
if submitted:
if selected_zn_type != 'All Resdidential Zoning (0, 101, 6)':
filtered_df = filtered_df[filtered_df['zn_type'] == selected_zn_type]
filtered_df = filtered_df[filtered_df['zn_area'].fillna(0) >= min_zn_area]
if min_fsi_total > 0:
filtered_df = filtered_df[filtered_df['fsi_total'] >= min_fsi_total]
if max_prcnt_cver < 100:
filtered_df = filtered_df[filtered_df['prcnt_cver'] <= max_prcnt_cver]
if height_stories_option == "Height" and min_height_value > 0:
filtered_df = filtered_df[filtered_df['height_metres'] >= min_height_value]
elif height_stories_option == "Stories" and min_stories_value > 0:
filtered_df = filtered_df[filtered_df['stories'] >= min_stories_value]
st.success(f"Applied attribute filters. Total properties after all filters: {len(filtered_df)}")
else:
st.info("Adjust filters and click 'Apply Attribute Filters'.")
# --- 4. Display Filtered Data on a New Map and as a Table ---
with st.expander("Filtered Properties Display", expanded=True):
if not filtered_df.empty:
# Calculate bounds for filtered data to set appropriate zoom
min_lat, max_lat = filtered_df['latitude'].min(), filtered_df['latitude'].max()
min_lon, max_lon = filtered_df['longitude'].min(), filtered_df['longitude'].max()
if min_lat == max_lat and min_lon == max_lon: # Single point case
filtered_map_center = [min_lat, min_lon]
filtered_map_zoom = 18
else:
filtered_map_center = [filtered_df['latitude'].mean(), filtered_df['longitude'].mean()]
lat_diff = max_lat - min_lat
lon_diff = max_lon - min_lon
# Heuristic for zoom level
if max(lat_diff, lon_diff) < 0.001: filtered_map_zoom = 18
elif max(lat_diff, lon_diff) < 0.01: filtered_map_zoom = 16
elif max(lat_diff, lon_diff) < 0.1: filtered_map_zoom = 14
else: filtered_map_zoom = 12
filtered_m = folium.Map(location=filtered_map_center, zoom_start=filtered_map_zoom)
# Add the drawn polygon to the new map if it exists
if polygon_drawn and polygon_coords:
folium.Polygon(
locations=polygon_coords,
color="#ef233c",
fill=True,
fill_color="#ef233c",
fill_opacity=0.5
).add_to(filtered_m)
# Convert filtered_df to GeoDataFrame for plotting
filtered_gdf = gpd.GeoDataFrame(filtered_df, geometry='geometry')
# --- Apply map display limit ---
features_to_plot_count = len(filtered_gdf)
if features_to_plot_count > MAX_MAP_FEATURES_DISPLAY:
st.warning(f"Displaying a random sample of {MAX_MAP_FEATURES_DISPLAY} properties on the map (out of {features_to_plot_count} total filtered) to prevent performance issues.")
filtered_gdf_for_map = filtered_gdf.sample(MAX_MAP_FEATURES_DISPLAY, random_state=42)
else:
filtered_gdf_for_map = filtered_gdf
# Add filtered polygons to the map as GeoJSON layer
folium.GeoJson(
filtered_gdf_for_map.to_json(),
style_function=lambda x: {
'fillColor': 'green',
'color': 'darkgreen',
'weight': 1,
'fillOpacity': 0.7
},
tooltip=folium.GeoJsonTooltip(
fields=['PARCELID', 'zn_type', 'zn_area', 'fsi_total', 'prcnt_cver', 'height_metres', 'stories', 'ADDRESS_NUMBER', 'LINEAR_NAME_FULL'],
aliases=['Parcel ID:', 'Zoning Type:', 'Lot Area (m²):', 'FSI:', 'Coverage (%):', 'Height (m):', 'Stories:', 'Address Num:', 'Street:'],
localize=True
)
).add_to(filtered_m)
st_folium(filtered_m, width=1000, height=500)
st.subheader("Filtered Properties Table")
display_cols = ['PARCELID', 'zn_type', 'zn_area', 'fsi_total', 'prcnt_cver', 'height_metres', 'stories', 'ADDRESS_NUMBER', 'LINEAR_NAME_FULL']
if len(filtered_df) > MAX_ROWS_DATAFRAME_DISPLAY:
st.warning(f"Displaying only the first {MAX_ROWS_DATAFRAME_DISPLAY} rows of the filtered data ({len(filtered_df)} total properties). Download the full dataset below.")
st.dataframe(filtered_df[display_cols].head(MAX_ROWS_DATAFRAME_DISPLAY))
else:
st.dataframe(filtered_df[display_cols])
# --- 5. Export Data Button ---
csv = filtered_df.to_csv(index=False).encode('utf-8')
st.download_button(
label="Export Full Filtered Data to CSV",
data=csv,
file_name="multiplex_coop_filtered_properties.csv",
mime="text/csv",
)
else:
st.warning("No properties match the current filters. Adjust your criteria or draw a polygon on the map.")
# Add a note about the MessageSizeError and config option
st.markdown("---")
st.markdown(
"""
**Troubleshooting Large Data:**
If you still encounter a `MessageSizeError` despite the display limits,
it means the data size still exceeds Streamlit's internal limit, or the sampled data is still too complex.
You can try decreasing `MAX_MAP_FEATURES_DISPLAY` and `MAX_ROWS_DATAFRAME_DISPLAY` further.
Alternatively, you can increase Streamlit's default message size limit by adding
`server.maxMessageSize = <size_in_mb>` (e.g., `server.maxMessageSize = 500`)
to your Streamlit `config.toml` file.
However, be aware that increasing this limit can lead to longer loading times and higher
memory consumption in your browser and on the Streamlit server.
"""
)
st.markdown("This app demonstrates spatial and attribute filtering on the ProjectMultiplexCoop/PropertyBoundaries dataset from Hugging Face. FSI, Building Coverage, Height, and Stories are synthetic for demonstration.") |