VocalWeb / app.py
PuristanLabs1's picture
Update app.py
0097003 verified
raw
history blame
12.6 kB
import spaces
import os
import gradio as gr
import trafilatura
from trafilatura import fetch_url, extract
from markitdown import MarkItDown
import torch
import soundfile as sf
import numpy as np
from langdetect import detect
from kokoro import KPipeline
import re
import json
import nltk
import stanza
from transformers import BartForConditionalGeneration, BartTokenizer
from nltk.tokenize import sent_tokenize
from wordcloud import WordCloud
import matplotlib.pyplot as plt
from PIL import Image
import io
from gliner import GLiNER
import tempfile
nltk.download("punkt")
nltk.download("punkt_tab")
stanza.download("en")
nlp = stanza.Pipeline("en", processors="tokenize,ner", use_gpu=False)
kokoro_tts = KPipeline(lang_code='a', device="cpu")
# Supported TTS Languages
SUPPORTED_TTS_LANGUAGES = {
"en": "a", # English (default)
"fr": "f", # French
"hi": "h", # Hindi
"it": "i", # Italian
"pt": "p", # Brazilian Portuguese
}
# Available voices in KokoroTTS
AVAILABLE_VOICES = [
'af_bella', 'af_sarah', 'am_adam', 'am_michael', 'bf_emma',
'bf_isabella', 'bm_george', 'bm_lewis', 'af_nicole', 'af_sky'
]
# Load BART Large CNN Model for Summarization
model_name = "facebook/bart-large-cnn"
tokenizer = BartTokenizer.from_pretrained(model_name)
model = BartForConditionalGeneration.from_pretrained(model_name)
# Initialize GLINER model
gliner_model = GLiNER.from_pretrained("urchade/gliner_base")
def fetch_and_display_content(url):
"""Fetch and extract text from a given URL (HTML or PDF)."""
if url.endswith(".pdf") or "pdf" in url:
converter = MarkItDown()
text = converter.convert(url).text_content
else:
downloaded = trafilatura.fetch_url(url)
text = extract(downloaded, output_format="markdown", with_metadata=True, include_tables=False, include_links=False, include_formatting=True, include_comments=False) #without metadata extraction
metadata, cleaned_text = extract_and_clean_text(text)
detected_lang = detect_language(cleaned_text)
# Add detected language to metadata
metadata["Detected Language"] = detected_lang.upper()
return cleaned_text, metadata, detected_lang, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
def extract_and_clean_text(data):
metadata_dict = {}
# Step 1: Extract metadata enclosed between "---" at the beginning
metadata_pattern = re.match(r"^---(.*?)---", data, re.DOTALL)
if metadata_pattern:
metadata_raw = metadata_pattern.group(1).strip()
data = data[metadata_pattern.end():].strip() # Remove metadata from text
metadata_lines = metadata_raw.split("\n")
for line in metadata_lines:
if ": " in line:
key, value = line.split(": ", 1) # Split at first ": "
if value.startswith("[") and value.endswith("]"):
try:
value = json.loads(value)
except json.JSONDecodeError:
pass
metadata_dict[key.strip()] = value.strip()
#Step 2: Remove everything before the "Abstract" section
def remove_text_before_abstract(text):
"""Removes all text before the first occurrence of 'Abstract'."""
abstract_pattern = re.compile(r"(?i)\babstract\b")
match = abstract_pattern.search(text)
if match:
return text[match.start():]
return text
data = remove_text_before_abstract(data)
# Step 3: Clean the extracted text
def clean_text(text):
text = re.sub(r'\[\d+\]', '', text)
text = re.sub(r'http[s]?://\S+', '', text)
text = re.sub(r'\[.*?\]\(http[s]?://\S+\)', '', text)
patterns = [r'References\b.*', r'Bibliography\b.*', r'External Links\b.*', r'COMMENTS\b.*']
for pattern in patterns:
text = re.sub(pattern, '', text, flags=re.IGNORECASE | re.DOTALL)
text = re.sub(r'\n\s*\n+', '\n\n', text).strip()
return text
return metadata_dict, clean_text(data)
### 3️⃣ Language Detection
def detect_language(text):
try:
lang = detect(text)
return lang if lang in SUPPORTED_TTS_LANGUAGES else "en" # Default to English if not supported
except:
return "en"
#Not using this one below. Using Gliner
def extract_entities_with_stanza(text, chunk_size=1000):
"""Splits text into chunks, runs Stanza NER, and combines results."""
sentences = sent_tokenize(text)
chunks = []
current_chunk = []
current_length = 0
for sentence in sentences:
if current_length + len(sentence) > chunk_size:
chunks.append(" ".join(current_chunk))
current_chunk = [sentence]
current_length = len(sentence)
else:
current_chunk.append(sentence)
current_length += len(sentence)
if current_chunk:
chunks.append(" ".join(current_chunk))
entities = []
for chunk in chunks:
doc = nlp(chunk)
for ent in doc.ents:
entities.append({"text": ent.text, "type": ent.type})
formatted_entities = "\n".join([f"{i+1}: {ent['text']} --> {ent['type']}" for i, ent in enumerate(entities)])
return formatted_entities
return entities
def generate_wordcloud(text):
if not text:
return None
wordcloud = WordCloud(width=800, height=400, background_color='white').generate(text)
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
buf.seek(0)
plt.close()
image = Image.open(buf)
return image
### 4️⃣ TTS Functionality (KokoroTTS)
@spaces.GPU(duration=1000)
def generate_audio_kokoro(text, lang, selected_voice):
"""Generate speech using KokoroTTS for supported languages."""
global kokoro_tts
if os.path.exists(f"audio_{lang}.wav"):
os.remove(f"audio_{lang}.wav")
lang_code = SUPPORTED_TTS_LANGUAGES.get(lang, "a") # Default to English
#generator = kokoro_tts(text, voice="bm_george", speed=1, split_pattern=r'\n+')
generator = kokoro_tts(text, voice=selected_voice, speed=1, split_pattern=r'\n+')
audio_data_list = [audio for _, _, audio in generator]
full_audio = np.concatenate(audio_data_list)
# Save to a temporary file
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
sf.write(temp_file, full_audio, 24000, format='wav')
temp_file_path = temp_file.name
print("Audio generated successfully.")
return temp_file_path
### 5️⃣ Chunk-Based Summarization
def split_text_with_optimized_overlap(text, max_tokens=1024, overlap_tokens=25):
"""Splits text into optimized overlapping chunks."""
sentences = sent_tokenize(text)
chunks = []
current_chunk = []
current_length = 0
previous_chunk_text = ""
for sentence in sentences:
tokenized_sentence = tokenizer.encode(sentence, add_special_tokens=False)
token_length = len(tokenized_sentence)
if current_length + token_length > max_tokens:
chunks.append(previous_chunk_text + " " + " ".join(current_chunk))
previous_chunk_text = " ".join(current_chunk)[-overlap_tokens:]
current_chunk = [sentence]
current_length = token_length
else:
current_chunk.append(sentence)
current_length += token_length
if current_chunk:
chunks.append(previous_chunk_text + " " + " ".join(current_chunk))
return chunks
def summarize_text(text, max_input_tokens=1024, max_output_tokens=200):
inputs = tokenizer.encode("summarize: " + text, return_tensors="pt", max_length=max_input_tokens, truncation=True)
summary_ids = model.generate(inputs, max_length=max_output_tokens, min_length=50, length_penalty=2.0, num_beams=4, early_stopping=True)
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
def hierarchical_summarization(text):
chunks = split_text_with_optimized_overlap(text)
chunk_summaries = [summarize_text(chunk) for chunk in chunks]
final_summary = " ".join(chunk_summaries)
return final_summary
def extract_entities_with_gliner(text, default_entity_types, custom_entity_types):
"""
Extract entities using GLINER with default and custom entity types.
"""
entity_types = default_entity_types.split(",") + [etype.strip() for etype in custom_entity_types.split(",") if custom_entity_types]
entity_types = list(set([etype.strip() for etype in entity_types if etype.strip()]))
entities = gliner_model.predict_entities(text, entity_types)
formatted_entities = "\n".join([f"{i+1}: {ent['text']} --> {ent['label']}" for i, ent in enumerate(entities)])
return formatted_entities
### 5️⃣ Main Processing Function
def process_url(url):
content = fetch_content(url)
metadata,cleaned_text = extract_and_clean_text(content)
detected_lang = detect_language(cleaned_text)
audio_file = generate_audio_kokoro(cleaned_text, detected_lang)
return cleaned_text, detected_lang, audio_file
### 6️⃣ Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# 🌍 Web-to-Audio Converter πŸŽ™οΈ")
url_input = gr.Textbox(label="Enter URL", placeholder="https://example.com/article")
voice_selection = gr.Dropdown(AVAILABLE_VOICES, label="Select Voice", value="bm_george")
tts_option = gr.Radio(["TTS based on Summary", "TTS based on Raw Data"], value="TTS based on Summary", label="Select TTS Source")
with gr.Row():
process_text_button = gr.Button("Fetch Text & Detect Language",scale = 1)
process_audio_button = gr.Button("Generate Audio", visible=False,scale = 1)
process_ner_button = gr.Button("Extract Entities", visible=False,scale = 1) # βœ… New button for NER
with gr.Row():
extracted_text = gr.Textbox(label="Extracted Content", visible=False, interactive=False, lines=15)
metadata_output = gr.JSON(label="Article Metadata", visible=False) # Displays metadata
wordcloud_output = gr.Image(label="Word Cloud", visible=False)
detected_lang = gr.Textbox(label="Detected Language", visible=False)
summary_output = gr.Textbox(label="Summary", visible=True, interactive=False)
full_audio_output = gr.Audio(label="Generated Audio", visible=True)
ner_output = gr.Textbox(label="Extracted Entities", visible=True, interactive=False)
default_entity_types = gr.Textbox(label="Default Entity Types", value="PERSON, Organization, location, Date, PRODUCT, EVENT", interactive=True)
custom_entity_types = gr.Textbox(label="Custom Entity Types", placeholder="Enter additional entity types (comma-separated)", interactive=True)
# Step 1: Fetch Text & Detect Language First
process_text_button.click(
fetch_and_display_content,
inputs=[url_input],
outputs=[extracted_text, metadata_output, detected_lang, wordcloud_output, process_audio_button,process_ner_button, extracted_text, metadata_output]
)
# Automatically generate word cloud when extracted_text changes
extracted_text.change(
generate_wordcloud,
inputs=[extracted_text],
outputs=[wordcloud_output],
show_progress=True
)
extracted_text.change(
hierarchical_summarization,
inputs=[extracted_text],
outputs=[summary_output],
show_progress=True
)
process_audio_button.click(
lambda text, summary, lang, voice, tts_choice: (
None, # Clear previous audio
generate_audio_kokoro(
summary if tts_choice == "TTS based on Summary" else text, lang, voice
)
),
inputs=[extracted_text, summary_output, detected_lang, voice_selection, tts_option],
outputs=[full_audio_output, full_audio_output], # Clear first, then display new audio
show_progress=True
)
process_ner_button.click(
extract_entities_with_gliner,
inputs=[extracted_text, default_entity_types, custom_entity_types],
outputs=[ner_output]
)
demo.launch()