VocalWeb / app.py
PuristanLabs1's picture
Update app.py
c94e9c4 verified
import spaces
import os
import gradio as gr
import trafilatura
from trafilatura import fetch_url, extract
from markitdown import MarkItDown
import torch
import soundfile as sf
import numpy as np
from langdetect import detect
from kokoro import KPipeline
import re
import json
import nltk
import stanza
from transformers import BartForConditionalGeneration, BartTokenizer
from nltk.tokenize import sent_tokenize
from wordcloud import WordCloud
import matplotlib.pyplot as plt
from PIL import Image
import io
import requests
from gliner import GLiNER
import tempfile
nltk.download("punkt")
nltk.download("punkt_tab")
kokoro_tts = KPipeline(lang_code='a')
# Supported TTS Languages
SUPPORTED_TTS_LANGUAGES = {
"en": "a", # English (default)
"fr": "f", # French
"hi": "h", # Hindi
"it": "i", # Italian
"pt": "p", # Brazilian Portuguese
}
# Available voices in KokoroTTS
AVAILABLE_VOICES = [
'af_bella', 'af_sarah', 'am_adam', 'am_michael', 'bf_emma',
'bf_isabella', 'bm_george', 'bm_lewis', 'af_nicole', 'af_sky'
]
# Load BART Large CNN Model for Summarization
model_name = "facebook/bart-large-cnn"
try:
tokenizer = BartTokenizer.from_pretrained(model_name, cache_dir=os.path.join(os.getcwd(), ".cache"))
model = BartForConditionalGeneration.from_pretrained(model_name, cache_dir=os.path.join(os.getcwd(), ".cache"))
except Exception as e:
raise RuntimeError(f"Error loading BART model: {e}")
# Initialize GLINER model
gliner_model = GLiNER.from_pretrained("urchade/gliner_base")
def is_pdf_url(url):
"""Robustly detects PDF files via URL patterns and Content-Type headers."""
# URL Pattern Check
if url.endswith(".pdf") or "pdf" in url.lower():
return True
# Check Content-Type Header (for URLs without '.pdf')
try:
response = requests.head(url, timeout=10)
content_type = response.headers.get('Content-Type', '')
if 'application/pdf' in content_type:
return True
except requests.RequestException:
pass # Ignore errors in Content-Type check
return False
def fetch_and_display_content(url):
"""
Fetch and extract text from a given URL (HTML or PDF).
Extract metadata, clean text, and detect language.
"""
downloaded = trafilatura.fetch_url(url)
if not downloaded:
raise ValueError(f"❌ Failed to fetch content from URL: {url}")
if is_pdf_url(url):
converter = MarkItDown(enable_plugins=False)
try:
text = converter.convert(url).text_content
except Exception as e:
raise RuntimeError(f"❌ Error converting PDF with MarkItDown: {e}")
else:
text = extract(downloaded, output_format="markdown", with_metadata=True, include_tables=False, include_links=False, include_formatting=True, include_comments=False)
if not text or len(text.strip()) == 0:
raise ValueError("❌ No content found in the extracted data.")
metadata, cleaned_text = extract_and_clean_text(text)
detected_lang = detect_language(cleaned_text)
# Add detected language to metadata
metadata["Detected Language"] = detected_lang.upper()
return (
cleaned_text,
metadata,
detected_lang,
gr.update(visible=True), # Show Word Cloud
gr.update(visible=True), # Show Process Audio Button
gr.update(visible=True), # Show Process NER Button
gr.update(visible=True), # Show Extracted Text
gr.update(visible=True) # Show Metadata Output
)
def extract_and_clean_text(data):
metadata_dict = {}
# Step 1: Extract metadata enclosed between "---" at the beginning
metadata_pattern = re.match(r"^---(.*?)---", data, re.DOTALL)
if metadata_pattern:
metadata_raw = metadata_pattern.group(1).strip()
data = data[metadata_pattern.end():].strip() # Remove metadata from text
metadata_lines = metadata_raw.split("\n")
for line in metadata_lines:
if ": " in line:
key, value = line.split(": ", 1) # Split at first ": "
if value.startswith("[") and value.endswith("]"):
try:
value = json.loads(value)
except json.JSONDecodeError:
pass
metadata_dict[key.strip()] = value.strip()
#Step 2: Remove everything before the "Abstract" section
def remove_text_before_abstract(text):
"""Removes all text before the first occurrence of 'Abstract'."""
abstract_pattern = re.compile(r"(?i)\babstract\b")
match = abstract_pattern.search(text)
if match:
return text[match.start():]
return text
data = remove_text_before_abstract(data)
# Step 3: Clean the extracted text
def clean_text(text):
text = re.sub(r'\[\d+\]', '', text)
text = re.sub(r'http[s]?://\S+', '', text)
text = re.sub(r'\[.*?\]\(http[s]?://\S+\)', '', text)
patterns = [r'References\b.*', r'Bibliography\b.*', r'External Links\b.*', r'COMMENTS\b.*']
for pattern in patterns:
text = re.sub(pattern, '', text, flags=re.IGNORECASE | re.DOTALL)
text = re.sub(r'\n\s*\n+', '\n\n', text).strip()
return text
return metadata_dict, clean_text(data)
### 3️⃣ Language Detection
def detect_language(text):
try:
lang = detect(text)
return lang if lang in SUPPORTED_TTS_LANGUAGES else "en" # Default to English if not supported
except:
return "en"
#Not using this one below. Using Gliner
def extract_entities_with_stanza(text, chunk_size=1000):
"""Splits text into chunks, runs Stanza NER, and combines results."""
sentences = sent_tokenize(text)
chunks = []
current_chunk = []
current_length = 0
for sentence in sentences:
if current_length + len(sentence) > chunk_size:
chunks.append(" ".join(current_chunk))
current_chunk = [sentence]
current_length = len(sentence)
else:
current_chunk.append(sentence)
current_length += len(sentence)
if current_chunk:
chunks.append(" ".join(current_chunk))
entities = []
for chunk in chunks:
doc = nlp(chunk)
for ent in doc.ents:
entities.append({"text": ent.text, "type": ent.type})
formatted_entities = "\n".join([f"{i+1}: {ent['text']} --> {ent['type']}" for i, ent in enumerate(entities)])
return formatted_entities
return entities
def generate_wordcloud(text):
if not text.strip():
raise ValueError("❌ Text is empty or invalid for WordCloud generation.")
wordcloud = WordCloud(width=800, height=400, background_color='white').generate(text)
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
buf.seek(0)
plt.close()
image = Image.open(buf)
return image
### 4️⃣ TTS Functionality (KokoroTTS)
@spaces.GPU(duration=1000)
def generate_audio_kokoro(text, lang, selected_voice):
"""Generate speech using KokoroTTS for supported languages."""
global kokoro_tts
lang_code = SUPPORTED_TTS_LANGUAGES.get(lang, "a") # Default to English
generator = kokoro_tts(text, voice=selected_voice, speed=1, split_pattern=r'\n+')
audio_data_list = [audio for _, _, audio in generator]
full_audio = np.concatenate(audio_data_list)
# Save to a temporary file
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
sf.write(temp_file, full_audio, 24000, format='wav')
temp_file_path = temp_file.name
print("Audio generated successfully.")
return temp_file_path
### 5️⃣ Chunk-Based Summarization
def split_text_with_optimized_overlap(text, max_tokens=1024, overlap_tokens=25):
"""Splits text into optimized overlapping chunks."""
sentences = sent_tokenize(text)
chunks = []
current_chunk = []
current_length = 0
previous_chunk_text = ""
for sentence in sentences:
tokenized_sentence = tokenizer.encode(sentence, add_special_tokens=False)
token_length = len(tokenized_sentence)
if current_length + token_length > max_tokens:
chunks.append(previous_chunk_text + " " + " ".join(current_chunk))
previous_chunk_text = " ".join(current_chunk)[-overlap_tokens:]
current_chunk = [sentence]
current_length = token_length
else:
current_chunk.append(sentence)
current_length += token_length
if current_chunk:
chunks.append(previous_chunk_text + " " + " ".join(current_chunk))
return chunks
def summarize_text(text, max_input_tokens=1024, max_output_tokens=200):
inputs = tokenizer.encode("summarize: " + text, return_tensors="pt", max_length=max_input_tokens, truncation=True)
summary_ids = model.generate(inputs, max_length=max_output_tokens, min_length=50, length_penalty=2.0, num_beams=4, early_stopping=True)
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
@spaces.GPU(duration=1000)
def hierarchical_summarization(text):
"""Performs hierarchical summarization by chunking content first."""
#print(f"βœ… Summarization will run on: {DEVICE.upper()}")
if len(text) > 10000:
print("⚠️ Warning: Large input text detected. Summarization may take longer than usual.")
chunks = split_text_with_optimized_overlap(text)
#Tokenize the input cleaned text
encoded_inputs = tokenizer(
["summarize: " + chunk for chunk in chunks],
return_tensors="pt",
padding=True,
truncation=True,
max_length=1024
)
#Generate the summary
summary_ids = model.generate(
encoded_inputs["input_ids"],
max_length=200,
min_length=50,
length_penalty=2.0,
num_beams=4,
early_stopping=True
)
#decode the summary generated in above step
chunk_summaries = [tokenizer.decode(ids, skip_special_tokens=True) for ids in summary_ids]
final_summary = " ".join(chunk_summaries)
return final_summary
def chunk_text_with_overlap(text, max_tokens=500, overlap_tokens=50):
"""Splits text into overlapping chunks for large document processing."""
sentences = re.split(r'(?<=[.!?])\s+', text) # Split on sentence boundaries
chunks = []
current_chunk = []
current_length = 0
previous_chunk_text = ""
for sentence in sentences:
token_length = len(sentence.split())
if current_length + token_length > max_tokens:
chunks.append(previous_chunk_text + " " + " ".join(current_chunk))
previous_chunk_text = " ".join(current_chunk)[-overlap_tokens:]
current_chunk = [sentence]
current_length = token_length
else:
current_chunk.append(sentence)
current_length += token_length
if current_chunk:
chunks.append(previous_chunk_text + " " + " ".join(current_chunk))
return chunks
def extract_entities_with_gliner(text, default_entity_types, custom_entity_types, batch_size=4):
"""
Extract entities using GLINER with efficient chunking, sliding window, and batching.
"""
# Entity types preparation
entity_types = default_entity_types.split(",") + [
etype.strip() for etype in custom_entity_types.split(",") if custom_entity_types
]
entity_types = list(set([etype.strip() for etype in entity_types if etype.strip()]))
# Chunk the text to avoid overflow
chunks = chunk_text_with_overlap(text)
# Process each chunk individually for improved stability
all_entities = []
for i, chunk in enumerate(chunks):
try:
entities = gliner_model.predict_entities(chunk, entity_types)
all_entities.extend(entities)
except Exception as e:
print(f"⚠️ Error processing chunk {i}: {e}")
# Format the results
formatted_entities = "\n".join(
[f"{i+1}: {ent['text']} --> {ent['label']}" for i, ent in enumerate(all_entities)]
)
return formatted_entities
### 5️⃣ Main Processing Function
def process_url(url):
content = fetch_content(url)
metadata,cleaned_text = extract_and_clean_text(content)
detected_lang = detect_language(cleaned_text)
audio_file = generate_audio_kokoro(cleaned_text, detected_lang)
return cleaned_text, detected_lang, audio_file
### 6️⃣ Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# 🌍 Web-to-Audio Converter πŸŽ™οΈ")
url_input = gr.Textbox(label="Enter URL", placeholder="https://example.com/article")
voice_selection = gr.Dropdown(AVAILABLE_VOICES, label="Select Voice", value="bm_george")
tts_option = gr.Radio(["TTS based on Summary", "TTS based on Raw Data"], value="TTS based on Summary", label="Select TTS Source")
with gr.Row():
process_text_button = gr.Button("Fetch Text & Detect Language",scale = 1)
process_audio_button = gr.Button("Generate Audio", visible=False,scale = 1)
process_ner_button = gr.Button("Extract Entities", visible=False,scale = 1) # βœ… New button for NER
with gr.Row():
extracted_text = gr.Textbox(label="Extracted Content", visible=False, interactive=False, lines=15)
metadata_output = gr.JSON(label="Article Metadata", visible=False) # Displays metadata
wordcloud_output = gr.Image(label="Word Cloud", visible=False)
detected_lang = gr.Textbox(label="Detected Language", visible=False)
summary_output = gr.Textbox(label="Summary", visible=True, interactive=False)
full_audio_output = gr.Audio(label="Generated Audio", visible=True)
ner_output = gr.Textbox(label="Extracted Entities", visible=True, interactive=False)
default_entity_types = gr.Textbox(label="Default Entity Types", value="PERSON, Organization, location, Date, PRODUCT, EVENT", interactive=True)
custom_entity_types = gr.Textbox(label="Custom Entity Types", placeholder="Enter additional entity types (comma-separated)", interactive=True)
# Step 1: Fetch Text & Detect Language First
process_text_button.click(
fetch_and_display_content,
inputs=[url_input],
outputs=[extracted_text, metadata_output, detected_lang, wordcloud_output, process_audio_button,process_ner_button, extracted_text, metadata_output]
)
# Automatically generate word cloud when extracted_text changes
extracted_text.change(
generate_wordcloud,
inputs=[extracted_text],
outputs=[wordcloud_output],
show_progress=True
)
# Step 3: Summarization (Generate Summary Before Enabling TTS Button)
def generate_summary_and_enable_tts(text):
summary = hierarchical_summarization(text)
return summary, gr.update(visible=True) # Enable the TTS button only after summary is generated
# Summarization
extracted_text.change(
generate_summary_and_enable_tts,
inputs=[extracted_text],
outputs=[summary_output, process_audio_button],
show_progress=True
)
# Audio Generation
process_audio_button.click(
lambda text, summary, lang, voice, tts_choice: (
None, # Clear previous audio
generate_audio_kokoro(
summary if tts_choice == "TTS based on Summary" else text, lang, voice
)
),
inputs=[extracted_text, summary_output, detected_lang, voice_selection, tts_option],
outputs=[full_audio_output, full_audio_output], # Clear first, then display new audio
show_progress=True
)
# NER Extraction
process_ner_button.click(
extract_entities_with_gliner,
inputs=[extracted_text, default_entity_types, custom_entity_types],
outputs=[ner_output]
)
demo.launch(share=True)