File size: 4,009 Bytes
c112753
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5ded5e
 
c112753
 
 
 
 
 
 
ebb5e67
 
c112753
 
 
 
 
 
 
 
 
 
 
 
a5ded5e
 
 
 
 
 
 
 
 
c112753
a5ded5e
c112753
 
91e8f4b
 
 
 
 
 
c112753
91e8f4b
c112753
 
 
 
 
 
 
 
 
 
 
 
 
 
9a2c7cc
a5ded5e
c112753
 
a5ded5e
 
 
9a2c7cc
 
 
a5ded5e
 
 
9a2c7cc
c112753
 
 
9a2c7cc
c112753
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9772b52
c112753
 
 
 
 
 
 
9772b52
c112753
 
9a2c7cc
c112753
9a2c7cc
c112753
 
9a2c7cc
 
c112753
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import gradio as gr
import numpy as np
import random

# import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/sdxl-turbo"  # Replace to the model you would like to use

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

# pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
# pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
    prompt1,
    prompt2,
    negative_prompt,
    seed,
    randomize_seed,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    # image = pipe(
    #     prompt=prompt,
    #     negative_prompt=negative_prompt,
    #     guidance_scale=guidance_scale,
    #     num_inference_steps=num_inference_steps,
    #     width=width,
    #     height=height,
    #     generator=generator,
    # ).images[0]

    # return image, seed


# examples = [
#     "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
#     "An astronaut riding a green horse",
#     "A delicious ceviche cheesecake slice",
# ]

examples = [
    ["A dog cooking dinner in the kitchen", "An orange cat wearing sunglasses on a ship"],
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image Gradio Template")

        with gr.Row():
            prompt1 = gr.Text(
                label="Prompt_1",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt for the first image",
                container=False,
            )
        
        with gr.Row():
            prompt2 = gr.Text(
                label="Prompt_2",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt for the second image",
                container=False,
            )

        with gr.Row():
            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=7.0,  # Replace with defaults that work for your model
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=50,  # Replace with defaults that work for your model
                )

        gr.Examples(examples=examples, inputs=[prompt1, prompt2])
    gr.on(
        triggers=[run_button.click, prompt1.submit, prompt2.submit],
        fn=infer,
        inputs=[
            prompt1,
            prompt2,
            negative_prompt,
            seed,
            randomize_seed,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()