File size: 6,595 Bytes
c112753
f9567e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c112753
f9567e5
 
c112753
 
f9567e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c112753
 
 
 
 
 
 
 
 
 
 
a5ded5e
 
c112753
 
 
 
 
f9567e5
c112753
ebb5e67
 
c112753
 
 
 
 
 
 
 
 
 
 
 
a5ded5e
 
 
 
 
 
 
 
 
c112753
a5ded5e
c112753
 
91e8f4b
 
 
 
 
 
c112753
91e8f4b
c112753
 
 
 
 
 
 
 
 
 
 
f9567e5
 
c112753
 
9a2c7cc
a5ded5e
c112753
 
a5ded5e
 
 
9a2c7cc
 
 
a5ded5e
 
 
9a2c7cc
c112753
 
 
9a2c7cc
c112753
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9772b52
c112753
 
 
 
 
 
 
9772b52
c112753
 
9a2c7cc
c112753
9a2c7cc
c112753
 
9a2c7cc
 
c112753
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import gradio as gr

from absl import flags
from absl import app
from ml_collections import config_flags
import os

import ml_collections
import torch
from torch import multiprocessing as mp
import torch.nn as nn
import accelerate
import utils
import tempfile
from absl import logging
import builtins
import einops
import math
import numpy as np
import time
from PIL import Image
import random

from diffusion.flow_matching import FlowMatching, ODEFlowMatchingSolver, ODEEulerFlowMatchingSolver
from tools.clip_score import ClipSocre
import libs.autoencoder
from libs.clip import FrozenCLIPEmbedder
from libs.t5 import T5Embedder


def unpreprocess(x):
        x = 0.5 * (x + 1.)
        x.clamp_(0., 1.)
        return x
    
def batch_decode(_z, decode, batch_size=10):
    """
    The VAE decoder requires large GPU memory. To run the interpolation model on GPUs with 24 GB or smaller RAM, you can use this code to reduce memory usage for the VAE. 
    It works by splitting the input tensor into smaller chunks.
    """
    num_samples = _z.size(0)
    decoded_batches = []

    for i in range(0, num_samples, batch_size):
        batch = _z[i:i + batch_size] 
        decoded_batch = decode(batch)
        decoded_batches.append(decoded_batch)

    image_unprocessed = torch.cat(decoded_batches, dim=0)
    return image_unprocessed

def get_caption(llm, text_model, prompt_dict, batch_size):
    
    if batch_size == 3:
        # only addition or only subtraction
        assert len(prompt_dict) == 2
        _batch_con = list(prompt_dict.values()) + [' ']
    elif batch_size == 4:
        # addition and subtraction
        assert len(prompt_dict) == 3
        _batch_con = list(prompt_dict.values()) + [' ']
    elif batch_size >= 5:
        # linear interpolation
        assert len(prompt_dict) == 2
        _batch_con = [prompt_dict['prompt_1']] + [' '] * (batch_size-2) + [prompt_dict['prompt_2']]

    if llm == "clip":
        _latent, _latent_and_others = text_model.encode(_batch_con)   
        _con = _latent_and_others['token_embedding'].detach()
    elif llm == "t5":
        _latent, _latent_and_others = text_model.get_text_embeddings(_batch_con)
        _con = (_latent_and_others['token_embedding'] * 10.0).detach()
    else:
        raise NotImplementedError
    _con_mask = _latent_and_others['token_mask'].detach()
    _batch_token = _latent_and_others['tokens'].detach()
    _batch_caption = _batch_con
    return (_con, _con_mask, _batch_token, _batch_caption)

import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/sdxl-turbo"  # Replace to the model you would like to use

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

# pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
# pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


@spaces.GPU #[uncomment to use ZeroGPU]
def infer(
    prompt1,
    prompt2,
    negative_prompt,
    seed,
    randomize_seed,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    # image = pipe(
    #     prompt=prompt,
    #     negative_prompt=negative_prompt,
    #     guidance_scale=guidance_scale,
    #     num_inference_steps=num_inference_steps,
    #     width=width,
    #     height=height,
    #     generator=generator,
    # ).images[0]

    # return image, seed


# examples = [
#     "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
#     "An astronaut riding a green horse",
#     "A delicious ceviche cheesecake slice",
# ]

examples = [
    ["A dog cooking dinner in the kitchen", "An orange cat wearing sunglasses on a ship"],
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # CrossFlow")
        gr.Markdown(" CrossFlow directly transforms text representations into images for text-to-image generation, enabling interpolation in the input text latent space.")

        with gr.Row():
            prompt1 = gr.Text(
                label="Prompt_1",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt for the first image",
                container=False,
            )
        
        with gr.Row():
            prompt2 = gr.Text(
                label="Prompt_2",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt for the second image",
                container=False,
            )

        with gr.Row():
            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=7.0,  # Replace with defaults that work for your model
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=50,  # Replace with defaults that work for your model
                )

        gr.Examples(examples=examples, inputs=[prompt1, prompt2])
    gr.on(
        triggers=[run_button.click, prompt1.submit, prompt2.submit],
        fn=infer,
        inputs=[
            prompt1,
            prompt2,
            negative_prompt,
            seed,
            randomize_seed,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()