File size: 6,595 Bytes
c112753 f9567e5 c112753 f9567e5 c112753 f9567e5 c112753 a5ded5e c112753 f9567e5 c112753 ebb5e67 c112753 a5ded5e c112753 a5ded5e c112753 91e8f4b c112753 91e8f4b c112753 f9567e5 c112753 9a2c7cc a5ded5e c112753 a5ded5e 9a2c7cc a5ded5e 9a2c7cc c112753 9a2c7cc c112753 9772b52 c112753 9772b52 c112753 9a2c7cc c112753 9a2c7cc c112753 9a2c7cc c112753 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import gradio as gr
from absl import flags
from absl import app
from ml_collections import config_flags
import os
import ml_collections
import torch
from torch import multiprocessing as mp
import torch.nn as nn
import accelerate
import utils
import tempfile
from absl import logging
import builtins
import einops
import math
import numpy as np
import time
from PIL import Image
import random
from diffusion.flow_matching import FlowMatching, ODEFlowMatchingSolver, ODEEulerFlowMatchingSolver
from tools.clip_score import ClipSocre
import libs.autoencoder
from libs.clip import FrozenCLIPEmbedder
from libs.t5 import T5Embedder
def unpreprocess(x):
x = 0.5 * (x + 1.)
x.clamp_(0., 1.)
return x
def batch_decode(_z, decode, batch_size=10):
"""
The VAE decoder requires large GPU memory. To run the interpolation model on GPUs with 24 GB or smaller RAM, you can use this code to reduce memory usage for the VAE.
It works by splitting the input tensor into smaller chunks.
"""
num_samples = _z.size(0)
decoded_batches = []
for i in range(0, num_samples, batch_size):
batch = _z[i:i + batch_size]
decoded_batch = decode(batch)
decoded_batches.append(decoded_batch)
image_unprocessed = torch.cat(decoded_batches, dim=0)
return image_unprocessed
def get_caption(llm, text_model, prompt_dict, batch_size):
if batch_size == 3:
# only addition or only subtraction
assert len(prompt_dict) == 2
_batch_con = list(prompt_dict.values()) + [' ']
elif batch_size == 4:
# addition and subtraction
assert len(prompt_dict) == 3
_batch_con = list(prompt_dict.values()) + [' ']
elif batch_size >= 5:
# linear interpolation
assert len(prompt_dict) == 2
_batch_con = [prompt_dict['prompt_1']] + [' '] * (batch_size-2) + [prompt_dict['prompt_2']]
if llm == "clip":
_latent, _latent_and_others = text_model.encode(_batch_con)
_con = _latent_and_others['token_embedding'].detach()
elif llm == "t5":
_latent, _latent_and_others = text_model.get_text_embeddings(_batch_con)
_con = (_latent_and_others['token_embedding'] * 10.0).detach()
else:
raise NotImplementedError
_con_mask = _latent_and_others['token_mask'].detach()
_batch_token = _latent_and_others['tokens'].detach()
_batch_caption = _batch_con
return (_con, _con_mask, _batch_token, _batch_caption)
import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
# pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
# pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU #[uncomment to use ZeroGPU]
def infer(
prompt1,
prompt2,
negative_prompt,
seed,
randomize_seed,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
# image = pipe(
# prompt=prompt,
# negative_prompt=negative_prompt,
# guidance_scale=guidance_scale,
# num_inference_steps=num_inference_steps,
# width=width,
# height=height,
# generator=generator,
# ).images[0]
# return image, seed
# examples = [
# "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
# "An astronaut riding a green horse",
# "A delicious ceviche cheesecake slice",
# ]
examples = [
["A dog cooking dinner in the kitchen", "An orange cat wearing sunglasses on a ship"],
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # CrossFlow")
gr.Markdown(" CrossFlow directly transforms text representations into images for text-to-image generation, enabling interpolation in the input text latent space.")
with gr.Row():
prompt1 = gr.Text(
label="Prompt_1",
show_label=False,
max_lines=1,
placeholder="Enter your prompt for the first image",
container=False,
)
with gr.Row():
prompt2 = gr.Text(
label="Prompt_2",
show_label=False,
max_lines=1,
placeholder="Enter your prompt for the second image",
container=False,
)
with gr.Row():
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.0, # Replace with defaults that work for your model
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=50, # Replace with defaults that work for your model
)
gr.Examples(examples=examples, inputs=[prompt1, prompt2])
gr.on(
triggers=[run_button.click, prompt1.submit, prompt2.submit],
fn=infer,
inputs=[
prompt1,
prompt2,
negative_prompt,
seed,
randomize_seed,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()
|