CrossFlow / app.py
QHL067's picture
working
f9567e5
raw
history blame
6.6 kB
import gradio as gr
from absl import flags
from absl import app
from ml_collections import config_flags
import os
import ml_collections
import torch
from torch import multiprocessing as mp
import torch.nn as nn
import accelerate
import utils
import tempfile
from absl import logging
import builtins
import einops
import math
import numpy as np
import time
from PIL import Image
import random
from diffusion.flow_matching import FlowMatching, ODEFlowMatchingSolver, ODEEulerFlowMatchingSolver
from tools.clip_score import ClipSocre
import libs.autoencoder
from libs.clip import FrozenCLIPEmbedder
from libs.t5 import T5Embedder
def unpreprocess(x):
x = 0.5 * (x + 1.)
x.clamp_(0., 1.)
return x
def batch_decode(_z, decode, batch_size=10):
"""
The VAE decoder requires large GPU memory. To run the interpolation model on GPUs with 24 GB or smaller RAM, you can use this code to reduce memory usage for the VAE.
It works by splitting the input tensor into smaller chunks.
"""
num_samples = _z.size(0)
decoded_batches = []
for i in range(0, num_samples, batch_size):
batch = _z[i:i + batch_size]
decoded_batch = decode(batch)
decoded_batches.append(decoded_batch)
image_unprocessed = torch.cat(decoded_batches, dim=0)
return image_unprocessed
def get_caption(llm, text_model, prompt_dict, batch_size):
if batch_size == 3:
# only addition or only subtraction
assert len(prompt_dict) == 2
_batch_con = list(prompt_dict.values()) + [' ']
elif batch_size == 4:
# addition and subtraction
assert len(prompt_dict) == 3
_batch_con = list(prompt_dict.values()) + [' ']
elif batch_size >= 5:
# linear interpolation
assert len(prompt_dict) == 2
_batch_con = [prompt_dict['prompt_1']] + [' '] * (batch_size-2) + [prompt_dict['prompt_2']]
if llm == "clip":
_latent, _latent_and_others = text_model.encode(_batch_con)
_con = _latent_and_others['token_embedding'].detach()
elif llm == "t5":
_latent, _latent_and_others = text_model.get_text_embeddings(_batch_con)
_con = (_latent_and_others['token_embedding'] * 10.0).detach()
else:
raise NotImplementedError
_con_mask = _latent_and_others['token_mask'].detach()
_batch_token = _latent_and_others['tokens'].detach()
_batch_caption = _batch_con
return (_con, _con_mask, _batch_token, _batch_caption)
import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
# pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
# pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU #[uncomment to use ZeroGPU]
def infer(
prompt1,
prompt2,
negative_prompt,
seed,
randomize_seed,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
# image = pipe(
# prompt=prompt,
# negative_prompt=negative_prompt,
# guidance_scale=guidance_scale,
# num_inference_steps=num_inference_steps,
# width=width,
# height=height,
# generator=generator,
# ).images[0]
# return image, seed
# examples = [
# "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
# "An astronaut riding a green horse",
# "A delicious ceviche cheesecake slice",
# ]
examples = [
["A dog cooking dinner in the kitchen", "An orange cat wearing sunglasses on a ship"],
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # CrossFlow")
gr.Markdown(" CrossFlow directly transforms text representations into images for text-to-image generation, enabling interpolation in the input text latent space.")
with gr.Row():
prompt1 = gr.Text(
label="Prompt_1",
show_label=False,
max_lines=1,
placeholder="Enter your prompt for the first image",
container=False,
)
with gr.Row():
prompt2 = gr.Text(
label="Prompt_2",
show_label=False,
max_lines=1,
placeholder="Enter your prompt for the second image",
container=False,
)
with gr.Row():
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.0, # Replace with defaults that work for your model
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=50, # Replace with defaults that work for your model
)
gr.Examples(examples=examples, inputs=[prompt1, prompt2])
gr.on(
triggers=[run_button.click, prompt1.submit, prompt2.submit],
fn=infer,
inputs=[
prompt1,
prompt2,
negative_prompt,
seed,
randomize_seed,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()