File size: 53,566 Bytes
e74bd37
f3c5e9a
 
 
e74bd37
 
 
f3c5e9a
 
 
2b039b0
 
e74bd37
f3c5e9a
 
 
 
 
 
 
 
 
 
 
 
e74bd37
f3c5e9a
2b039b0
 
e74bd37
 
 
 
 
f3c5e9a
e74bd37
f3c5e9a
e74bd37
 
 
 
 
 
f3c5e9a
 
e74bd37
2b039b0
 
 
 
 
e74bd37
 
 
 
 
 
 
 
 
f3c5e9a
e74bd37
 
 
 
2b039b0
f3c5e9a
 
 
 
e74bd37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3c5e9a
e74bd37
 
 
 
 
 
 
 
 
f3c5e9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e74bd37
2b039b0
 
 
 
 
 
f3c5e9a
 
 
e74bd37
 
 
f3c5e9a
2b039b0
e74bd37
f3c5e9a
 
 
 
e74bd37
f3c5e9a
 
e74bd37
f3c5e9a
 
 
 
e74bd37
 
 
f3c5e9a
 
 
e74bd37
f3c5e9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b039b0
f3c5e9a
 
 
2b039b0
e74bd37
f3c5e9a
 
 
2b039b0
e74bd37
2b039b0
 
e74bd37
f3c5e9a
 
 
2b039b0
 
 
 
f3c5e9a
 
 
e74bd37
f3c5e9a
 
 
 
e74bd37
 
 
f3c5e9a
 
e74bd37
f3c5e9a
e74bd37
f3c5e9a
 
 
e74bd37
 
f3c5e9a
8a9a5d1
db81e26
e74bd37
f3c5e9a
 
 
 
e74bd37
f3c5e9a
e74bd37
 
 
 
 
 
 
 
 
 
 
f3c5e9a
e74bd37
 
 
 
 
f3c5e9a
 
 
 
 
 
 
 
 
e74bd37
 
 
 
 
 
f3c5e9a
e74bd37
 
f3c5e9a
2b039b0
f3c5e9a
 
 
 
2b039b0
f3c5e9a
2b039b0
 
f3c5e9a
 
 
 
 
2b039b0
 
 
 
f3c5e9a
2b039b0
 
f3c5e9a
 
2b039b0
f3c5e9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b039b0
 
 
 
f3c5e9a
 
 
2b039b0
 
 
 
 
 
 
 
f3c5e9a
2b039b0
 
 
 
 
 
 
 
f3c5e9a
2b039b0
 
 
f3c5e9a
 
 
 
 
2b039b0
f3c5e9a
2b039b0
f3c5e9a
 
e74bd37
f3c5e9a
 
 
2b039b0
 
f3c5e9a
 
 
 
 
 
 
 
 
 
2b039b0
f3c5e9a
 
 
 
2b039b0
 
 
 
 
f3c5e9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b039b0
f3c5e9a
 
 
 
 
 
 
 
 
2b039b0
 
 
01f8b32
2b039b0
01f8b32
2b039b0
 
 
 
 
 
 
 
 
 
f3c5e9a
 
 
 
2b039b0
f3c5e9a
2b039b0
 
 
f3c5e9a
 
 
2b039b0
 
f3c5e9a
2b039b0
 
f3c5e9a
2b039b0
 
 
 
f3c5e9a
2b039b0
 
 
 
 
f3c5e9a
2b039b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3c5e9a
2b039b0
 
 
 
 
 
 
 
 
 
 
f3c5e9a
2b039b0
 
f3c5e9a
2b039b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01f8b32
2b039b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3c5e9a
2b039b0
 
f3c5e9a
2b039b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3c5e9a
2b039b0
 
 
 
 
 
f3c5e9a
2b039b0
 
 
 
 
 
 
 
 
 
 
 
 
f3c5e9a
2b039b0
 
f3c5e9a
2b039b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3c5e9a
2b039b0
 
 
 
f3c5e9a
 
 
2b039b0
 
f3c5e9a
2b039b0
f3c5e9a
2b039b0
 
 
f3c5e9a
 
2b039b0
f3c5e9a
 
 
2b039b0
 
 
 
f3c5e9a
2b039b0
f3c5e9a
 
 
 
 
 
 
 
 
 
 
2b039b0
f3c5e9a
 
 
 
 
2b039b0
 
 
 
 
 
 
 
 
f3c5e9a
 
 
 
 
 
2b039b0
f3c5e9a
 
2b039b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3c5e9a
2b039b0
 
 
 
 
 
 
 
f3c5e9a
2b039b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e74bd37
2b039b0
 
 
 
 
 
 
 
 
e74bd37
2b039b0
 
 
e74bd37
2b039b0
 
e74bd37
2b039b0
 
e74bd37
2b039b0
e74bd37
 
2b039b0
 
e74bd37
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
import gradio as gr
from phi.agent import Agent
from phi.model.groq import Groq
import os
import logging
from sentence_transformers import CrossEncoder
from backend.semantic_search import table, retriever
import numpy as np
from time import perf_counter
import requests
from jinja2 import Environment, FileSystemLoader
from pathlib import Path

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# API Key setup
api_key = os.getenv("GROQ_API_KEY")
if not api_key:
    gr.Warning("GROQ_API_KEY not found. Set it in 'Repository secrets'.")
    logger.error("GROQ_API_KEY not found.")
    api_key = ""  # Fallback to empty string, but this will fail without a key
else:
    os.environ["GROQ_API_KEY"] = api_key

# Bhashini API setup
bhashini_api_key = os.getenv("API_KEY", "").strip()
bhashini_user_id = os.getenv("USER_ID", "").strip()

def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") -> dict:
    """Translates text from source language to target language using the Bhashini API."""
    if not text.strip():
        print('Input text is empty. Please provide valid text for translation.')
        return {"status_code": 400, "message": "Input text is empty", "translated_content": None}
    else:
        print('Input text - ', text)
    print(f'Starting translation process from {from_code} to {to_code}...')
    gr.Warning(f'Translating to {to_code}...')
    
    url = 'https://meity-auth.ulcacontrib.org/ulca/apis/v0/model/getModelsPipeline'
    headers = {
        "Content-Type": "application/json",
        "userID": bhashini_user_id,
        "ulcaApiKey": bhashini_api_key
    }
    for key, value in headers.items():
        if not isinstance(value, str) or '\n' in value or '\r' in value:
            print(f"Invalid header value for {key}: {value}")
            return {"status_code": 400, "message": f"Invalid header value for {key}", "translated_content": None}

    payload = {
        "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}}}],
        "pipelineRequestConfig": {"pipelineId": "64392f96daac500b55c543cd"}
    }
    
    print('Sending initial request to get the pipeline...')
    response = requests.post(url, json=payload, headers=headers)
    
    if response.status_code != 200:
        print(f'Error in initial request: {response.status_code}, Response: {response.text}')
        return {"status_code": response.status_code, "message": "Error in translation request", "translated_content": None}

    print('Initial request successful, processing response...')
    response_data = response.json()
    print('Full response data:', response_data)
    if "pipelineInferenceAPIEndPoint" not in response_data or "callbackUrl" not in response_data["pipelineInferenceAPIEndPoint"]:
        print('Unexpected response structure:', response_data)
        return {"status_code": 400, "message": "Unexpected API response structure", "translated_content": None}

    service_id = response_data["pipelineResponseConfig"][0]["config"][0]["serviceId"]
    callback_url = response_data["pipelineInferenceAPIEndPoint"]["callbackUrl"]
    
    print(f'Service ID: {service_id}, Callback URL: {callback_url}')
    
    headers2 = {
        "Content-Type": "application/json",
        response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["name"]: response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["value"]
    }
    compute_payload = {
        "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}, "serviceId": service_id}}],
        "inputData": {"input": [{"source": text}], "audio": [{"audioContent": None}]}
    }
    
    print(f'Sending translation request with text: "{text}"')
    compute_response = requests.post(callback_url, json=compute_payload, headers=headers2)
    
    if compute_response.status_code != 200:
        print(f'Error in translation request: {compute_response.status_code}, Response: {compute_response.text}')
        return {"status_code": compute_response.status_code, "message": "Error in translation", "translated_content": None}
    
    print('Translation request successful, processing translation...')
    compute_response_data = compute_response.json()
    translated_content = compute_response_data["pipelineResponse"][0]["output"][0]["target"]
    
    print(f'Translation successful. Translated content: "{translated_content}"')
    return {"status_code": 200, "message": "Translation successful", "translated_content": translated_content}

# Initialize PhiData Agent
agent = Agent(
    name="Science Education Assistant",
    role="You are a helpful science tutor for 10th-grade students",
    instructions=[
        "You are an expert science teacher specializing in 10th-grade curriculum.",
        "Provide clear, accurate, and age-appropriate explanations.",
        "Use simple language and examples that students can understand.",
        "Focus on concepts from physics, chemistry, and biology.",
        "Structure responses with headings and bullet points when helpful.",
        "Encourage learning and curiosity."
    ],
    model=Groq(id="llama3-70b-8192", api_key=api_key),
    markdown=True
)

# Set up Jinja2 environment
proj_dir = Path(__file__).parent
env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))
template = env.get_template('template.j2')  # For document context
template_html = env.get_template('template_html.j2')  # For HTML output

# Response Generation Function
def retrieve_and_generate_response(query, cross_encoder_choice, history=None):
    """Generate response using semantic search and LLM"""
    top_rerank = 25
    top_k_rank = 20
    
    if not query.strip():
        return "Please provide a valid question.", []
    
    try:
        start_time = perf_counter()
        
        # Encode query and search documents
        query_vec = retriever.encode(query)
        documents = table.search(query_vec, vector_column_name="vector").limit(top_rerank).to_list()
        documents = [doc["text"] for doc in documents]
        
        # Re-rank documents using cross-encoder
        cross_encoder_model = CrossEncoder('BAAI/bge-reranker-base') if cross_encoder_choice == '(ACCURATE) BGE reranker' else CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
        query_doc_pair = [[query, doc] for doc in documents]
        cross_scores = cross_encoder_model.predict(query_doc_pair)
        sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
        documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
        
        # Create context from top documents
        context = "\n\n".join(documents[:10]) if documents else ""
        context = f"Context information from educational materials:\n{context}\n\n"
        
        # Add conversation history for context
        history_context = ""
        if history and len(history) > 0:
            for user_msg, bot_msg in history[-2:]:  # Last 2 exchanges
                if user_msg and bot_msg:
                    history_context += f"Previous Q: {user_msg}\nPrevious A: {bot_msg}\n"
        
        # Create full prompt
        full_prompt = f"{history_context}{context}Question: {query}\n\nPlease answer the question using the context provided above. If the context doesn't contain relevant information, use your general knowledge about 10th-grade science topics."
        
        # Generate response
        response = agent.run(full_prompt)
        response_text = response.content if hasattr(response, 'content') else str(response)
        
        logger.info(f"Response generation took {perf_counter() - start_time:.2f} seconds")
        return response_text, documents  # Return documents for template
    
    except Exception as e:
        logger.error(f"Error in response generation: {e}")
        return f"Error generating response: {str(e)}", []

def simple_chat_function(message, history, cross_encoder_choice):
    """Chat function with semantic search and retriever integration"""
    if not message.strip():
        return "", history, ""
    
    # Generate response and get documents
    response, documents = retrieve_and_generate_response(message, cross_encoder_choice, history)
    
    # Add to history
    history.append([message, response])
    
    # Render template with documents and query
    prompt_html = template_html.render(documents=documents, query=message)
    
    return "", history, prompt_html

def translate_text(selected_language, history):
    """Translate the last response in history to the selected language."""
    iso_language_codes = {
        "Hindi": "hi", "Gom": "gom", "Kannada": "kn", "Dogri": "doi", "Bodo": "brx", "Urdu": "ur",
        "Tamil": "ta", "Kashmiri": "ks", "Assamese": "as", "Bengali": "bn", "Marathi": "mr",
        "Sindhi": "sd", "Maithili": "mai", "Punjabi": "pa", "Malayalam": "ml", "Manipuri": "mni",
        "Telugu": "te", "Sanskrit": "sa", "Nepali": "ne", "Santali": "sat", "Gujarati": "gu", "Odia": "or"
    }
    
    to_code = iso_language_codes[selected_language]
    response_text = history[-1][1] if history and history[-1][1] else ''
    print('response_text for translation', response_text)
    translation = bhashini_translate(response_text, to_code=to_code)
    return translation.get('translated_content', 'Translation failed.')

# Gradio Interface with layout template
with gr.Blocks(title="Science Chatbot", theme='gradio/soft') as demo:
    # Header section
    with gr.Row():
        with gr.Column(scale=10):
            gr.HTML(value="""<div style="color: #FF4500;"><h1>Welcome! I am your friend!</h1>Ask me !I will help you<h1><span style="color: #008000">I AM A CHATBOT FOR 10TH SCIENCE WITH TRANSLATION IN 22 LANGUAGES</span></h1></div>""")
            gr.HTML(value=f"""<p style="font-family: sans-serif; font-size: 16px;">A free chat bot developed by K.M.RAMYASRI,TGT,GHS.SUTHUKENY using Open source LLMs for 9 std students</p>""")
            gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;"> Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""")
        with gr.Column(scale=3):
            try:
                gr.Image(value='logo.png', height=200, width=200)
            except:
                gr.HTML("<div style='height: 200px; width: 200px; background-color: #f0f0f0; display: flex; align-items: center; justify-content: center;'>Logo</div>")

    # Chat and input components
    chatbot = gr.Chatbot(
        [],
        elem_id="chatbot",
        avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
                       'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
        bubble_full_width=False,
        show_copy_button=True,
        show_share_button=True,
    )

    with gr.Row():
        msg = gr.Textbox(
            scale=3,
            show_label=False,
            placeholder="Enter text and press enter",
            container=False,
        )
        submit_btn = gr.Button(value="Submit text", scale=1, variant="primary")

    # Additional controls
    cross_encoder = gr.Radio(
        choices=['(FAST) MiniLM-L6v2', '(ACCURATE) BGE reranker'],
        value='(ACCURATE) BGE reranker',
        label="Embeddings Model",
        info="Select the model for document ranking"
    )
    language_dropdown = gr.Dropdown(
        choices=[
            "Hindi", "Gom", "Kannada", "Dogri", "Bodo", "Urdu", "Tamil", "Kashmiri", "Assamese", "Bengali", "Marathi",
            "Sindhi", "Maithili", "Punjabi", "Malayalam", "Manipuri", "Telugu", "Sanskrit", "Nepali", "Santali",
            "Gujarati", "Odia"
        ],
        value="Hindi",
        label="Select Language for Translation"
    )
    translated_textbox = gr.Textbox(label="Translated Response")
    prompt_html = gr.HTML()  # Add HTML component for the template

    # Event handlers
    def update_chat_and_translate(message, history, cross_encoder_choice, selected_language):
        if not message.strip():
            return "", history, "", ""
        
        # Generate response and get documents
        response, documents = retrieve_and_generate_response(message, cross_encoder_choice, history)
        history.append([message, response])
        
        # Translate response
        translated_text = translate_text(selected_language, history)
        
        # Render template with documents and query
        prompt_html_content = template_html.render(documents=documents, query=message)
        
        return "", history, translated_text, prompt_html_content

    msg.submit(update_chat_and_translate, [msg, chatbot, cross_encoder, language_dropdown], [msg, chatbot, translated_textbox, prompt_html])
    submit_btn.click(update_chat_and_translate, [msg, chatbot, cross_encoder, language_dropdown], [msg, chatbot, translated_textbox, prompt_html])

    clear = gr.Button("Clear Conversation")
    clear.click(lambda: ([], "", "", ""), outputs=[chatbot, msg, translated_textbox, prompt_html])

    # Example questions
    gr.Examples(
        examples=[
            'What is the difference between metals and non-metals?',
            'What is an ionic bond?',
            'Explain asexual reproduction',
            'What is photosynthesis?',
            'Explain Newton\'s laws of motion'
        ],
        inputs=msg,
        label="Try these example questions:"
    )

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)# import gradio as gr
# from phi.agent import Agent
# from phi.model.groq import Groq
# import os
# import logging
# from sentence_transformers import CrossEncoder
# from backend.semantic_search import table, retriever
# import numpy as np
# from time import perf_counter
# import requests
# from jinja2 import Environment, FileSystemLoader

# # Set up logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)

# # API Key setup
# api_key = os.getenv("GROQ_API_KEY")
# if not api_key:
#     gr.Warning("GROQ_API_KEY not found. Set it in 'Repository secrets'.")
#     logger.error("GROQ_API_KEY not found.")
#     api_key = ""  # Fallback to empty string, but this will fail without a key
# else:
#     os.environ["GROQ_API_KEY"] = api_key

# # Bhashini API setup
# bhashini_api_key = os.getenv("API_KEY")
# bhashini_user_id = os.getenv("USER_ID")

# def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") -> dict:
#     """Translates text from source language to target language using the Bhashini API."""
#     if not text.strip():
#         print('Input text is empty. Please provide valid text for translation.')
#         return {"status_code": 400, "message": "Input text is empty", "translated_content": None}
#     else:
#         print('Input text - ', text)
#     print(f'Starting translation process from {from_code} to {to_code}...')
#     gr.Warning(f'Translating to {to_code}...')
    
#     url = 'https://meity-auth.ulcacontrib.org/ulca/apis/v0/model/getModelsPipeline'
#     headers = {
#         "Content-Type": "application/json",
#         "userID": bhashini_user_id,
#         "ulcaApiKey": bhashini_api_key
#     }
#     payload = {
#         "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}}}],
#         "pipelineRequestConfig": {"pipelineId": "64392f96daac500b55c543cd"}
#     }
    
#     print('Sending initial request to get the pipeline...')
#     response = requests.post(url, json=payload, headers=headers)
    
#     if response.status_code != 200:
#         print(f'Error in initial request: {response.status_code}, Response: {response.text}')
#         return {"status_code": response.status_code, "message": "Error in translation request", "translated_content": None}

#     print('Initial request successful, processing response...')
#     response_data = response.json()
#     print('Full response data:', response_data)  # Debug the full response
#     if "pipelineInferenceAPIEndPoint" not in response_data or "callbackUrl" not in response_data["pipelineInferenceAPIEndPoint"]:
#         print('Unexpected response structure:', response_data)
#         return {"status_code": 400, "message": "Unexpected API response structure", "translated_content": None}

#     service_id = response_data["pipelineResponseConfig"][0]["config"][0]["serviceId"]
#     callback_url = response_data["pipelineInferenceAPIEndPoint"]["callbackUrl"]
    
#     print(f'Service ID: {service_id}, Callback URL: {callback_url}')
    
#     headers2 = {
#         "Content-Type": "application/json",
#         response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["name"]: response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["value"]
#     }
#     compute_payload = {
#         "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}, "serviceId": service_id}}],
#         "inputData": {"input": [{"source": text}], "audio": [{"audioContent": None}]}
#     }
    
#     print(f'Sending translation request with text: "{text}"')
#     compute_response = requests.post(callback_url, json=compute_payload, headers=headers2)
    
#     if compute_response.status_code != 200:
#         print(f'Error in translation request: {compute_response.status_code}, Response: {compute_response.text}')
#         return {"status_code": compute_response.status_code, "message": "Error in translation", "translated_content": None}
    
#     print('Translation request successful, processing translation...')
#     compute_response_data = compute_response.json()
#     translated_content = compute_response_data["pipelineResponse"][0]["output"][0]["target"]
    
#     print(f'Translation successful. Translated content: "{translated_content}"')
#     return {"status_code": 200, "message": "Translation successful", "translated_content": translated_content}

# # Initialize PhiData Agent
# agent = Agent(
#     name="Science Education Assistant",
#     role="You are a helpful science tutor for 9th-grade students",
#     instructions=[
#         "You are an expert science teacher specializing in 9th-grade curriculum.",
#         "Provide clear, accurate, and age-appropriate explanations.",
#         "Use simple language and examples that students can understand.",
#         "Focus on concepts from physics, chemistry, and biology.",
#         "Structure responses with headings and bullet points when helpful.",
#         "Encourage learning and curiosity."
#     ],
#     model=Groq(id="llama3-70b-8192", api_key=api_key),
#     markdown=True
# )
# # Set up Jinja2 environment
# proj_dir = Path(__file__).parent
# env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))


# template_html = env.get_template('template_html.j2')

# # Response Generation Function
# def retrieve_and_generate_response(query, cross_encoder_choice, history=None):
#     """Generate response using semantic search and LLM"""
#     top_rerank = 25
#     top_k_rank = 20
    
#     if not query.strip():
#         return "Please provide a valid question."
    
#     try:
#         start_time = perf_counter()
        
#         # Encode query and search documents
#         query_vec = retriever.encode(query)
#         documents = table.search(query_vec, vector_column_name="vector").limit(top_rerank).to_list()
#         documents = [doc["text"] for doc in documents]
        
#         # Re-rank documents using cross-encoder
#         cross_encoder_model = CrossEncoder('BAAI/bge-reranker-base') if cross_encoder_choice == '(ACCURATE) BGE reranker' else CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
#         query_doc_pair = [[query, doc] for doc in documents]
#         cross_scores = cross_encoder_model.predict(query_doc_pair)
#         sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
#         documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
        
#         # Create context from top documents
#         context = "\n\n".join(documents[:10]) if documents else ""
#         context = f"Context information from educational materials:\n{context}\n\n"
        
#         # Add conversation history for context
#         history_context = ""
#         if history and len(history) > 0:
#             for user_msg, bot_msg in history[-2:]:  # Last 2 exchanges
#                 if user_msg and bot_msg:
#                     history_context += f"Previous Q: {user_msg}\nPrevious A: {bot_msg}\n"
        
#         # Create full prompt
#         full_prompt = f"{history_context}{context}Question: {query}\n\nPlease answer the question using the context provided above. If the context doesn't contain relevant information, use your general knowledge about 10th-grade science topics."
        
#         # Generate response
#         response = agent.run(full_prompt)
#         response_text = response.content if hasattr(response, 'content') else str(response)
        
#         logger.info(f"Response generation took {perf_counter() - start_time:.2f} seconds")
#         return response_text
    
#     except Exception as e:
#         logger.error(f"Error in response generation: {e}")
#         return f"Error generating response: {str(e)}"

# def simple_chat_function(message, history, cross_encoder_choice):
#     """Chat function with semantic search and retriever integration"""
#     if not message.strip():
#         return "", history
    
#     # Generate response using the semantic search function
#     response = retrieve_and_generate_response(message, cross_encoder_choice, history)
    
#     # Add to history
#     history.append([message, response])
    
#     return "", history

# def translate_text(selected_language, history):
#     """Translate the last response in history to the selected language."""
#     iso_language_codes = {
#         "Hindi": "hi", "Gom": "gom", "Kannada": "kn", "Dogri": "doi", "Bodo": "brx", "Urdu": "ur",
#         "Tamil": "ta", "Kashmiri": "ks", "Assamese": "as", "Bengali": "bn", "Marathi": "mr",
#         "Sindhi": "sd", "Maithili": "mai", "Punjabi": "pa", "Malayalam": "ml", "Manipuri": "mni",
#         "Telugu": "te", "Sanskrit": "sa", "Nepali": "ne", "Santali": "sat", "Gujarati": "gu", "Odia": "or"
#     }
    
#     to_code = iso_language_codes[selected_language]
#     response_text = history[-1][1] if history and history[-1][1] else ''
#     print('response_text for translation', response_text)
#     translation = bhashini_translate(response_text, to_code=to_code)
#     return translation.get('translated_content', 'Translation failed.')

# # Gradio Interface with layout template
# with gr.Blocks(title="Science Chatbot", theme='gradio/soft') as demo:
#     # Header section
#     with gr.Row():
#         with gr.Column(scale=10):
#             gr.HTML(value="""<div style="color: #FF4500;"><h1>Welcome! I am your friend!</h1>Ask me !I will help you<h1><span style="color: #008000">I AM A CHATBOT FOR 9TH SCIENCE WITH TRANSLATION IN 22 LANGUAGES</span></h1></div>""")
#             gr.HTML(value=f"""<p style="font-family: sans-serif; font-size: 16px;">A free chat bot developed by K.M.RAMYASRI,TGT,GHS.SUTHUKENY using Open source LLMs for 10 std students</p>""")
#             gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;"> Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""")
#         with gr.Column(scale=3):
#             try:
#                 gr.Image(value='logo.png', height=200, width=200)
#             except:
#                 gr.HTML("<div style='height: 200px; width: 200px; background-color: #f0f0f0; display: flex; align-items: center; justify-content: center;'>Logo</div>")

#     # Chat and input components
#     chatbot = gr.Chatbot(
#         [],
#         elem_id="chatbot",
#         avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
#                        'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
#         bubble_full_width=False,
#         show_copy_button=True,
#         show_share_button=True,
#     )

#     with gr.Row():
#         msg = gr.Textbox(
#             scale=3,
#             show_label=False,
#             placeholder="Enter text and press enter",
#             container=False,
#         )
#         submit_btn = gr.Button(value="Submit text", scale=1, variant="primary")

#     # Additional controls
#     cross_encoder = gr.Radio(
#         choices=['(FAST) MiniLM-L6v2', '(ACCURATE) BGE reranker'],
#         value='(ACCURATE) BGE reranker',
#         label="Embeddings Model",
#         info="Select the model for document ranking"
#     )
#     language_dropdown = gr.Dropdown(
#         choices=[
#             "Hindi", "Gom", "Kannada", "Dogri", "Bodo", "Urdu", "Tamil", "Kashmiri", "Assamese", "Bengali", "Marathi",
#             "Sindhi", "Maithili", "Punjabi", "Malayalam", "Manipuri", "Telugu", "Sanskrit", "Nepali", "Santali",
#             "Gujarati", "Odia"
#         ],
#         value="Hindi",
#         label="Select Language for Translation"
#     )
#     translated_textbox = gr.Textbox(label="Translated Response")

#     # Event handlers
#     def update_chat_and_translate(message, history, cross_encoder_choice, selected_language):
#         if not message.strip():
#             return "", history, ""
        
#         # Generate response
#         response = retrieve_and_generate_response(message, cross_encoder_choice, history)
#         history.append([message, response])
        
#         # Translate response
#         translated_text = translate_text(selected_language, history)
        
#         return "", history, translated_text

#     msg.submit(update_chat_and_translate, [msg, chatbot, cross_encoder, language_dropdown], [msg, chatbot, translated_textbox])
#     submit_btn.click(update_chat_and_translate, [msg, chatbot, cross_encoder, language_dropdown], [msg, chatbot, translated_textbox])

#     clear = gr.Button("Clear Conversation")
#     clear.click(lambda: ([], "", ""), outputs=[chatbot, msg, translated_textbox])

#     # Example questions
#     gr.Examples(
#         examples=[
#             'What is the difference between metals and non-metals?',
#             'What is an ionic bond?',
#             'Explain asexual reproduction',
#             'What is photosynthesis?',
#             'Explain Newton\'s laws of motion'
#         ],
#         inputs=msg,
#         label="Try these example questions:"
#     )

# if __name__ == "__main__":
#     demo.launch(server_name="0.0.0.0", server_port=7860)# import gradio as gr
# import gradio as gr
# from phi.agent import Agent
# from phi.model.groq import Groq
# import os
# import logging
# from sentence_transformers import CrossEncoder
# from backend.semantic_search import table, retriever
# import numpy as np
# from time import perf_counter
# import requests

# # Set up logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)

# # API Key setup
# api_key = os.getenv("GROQ_API_KEY")
# if not api_key:
#     gr.Warning("GROQ_API_KEY not found. Set it in 'Repository secrets'.")
#     logger.error("GROQ_API_KEY not found.")
#     api_key = ""  # Fallback to empty string, but this will fail without a key
# else:
#     os.environ["GROQ_API_KEY"] = api_key

# # Bhashini API setup
# bhashini_api_key = os.getenv("API_KEY")
# bhashini_user_id = os.getenv("USER_ID")

# def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") -> dict:
#     """Translates text from source language to target language using the Bhashini API."""
#     if not text.strip():
#         print('Input text is empty. Please provide valid text for translation.')
#         return {"status_code": 400, "message": "Input text is empty", "translated_content": None}
#     else:
#         print('Input text - ', text)
#     print(f'Starting translation process from {from_code} to {to_code}...')
#     gr.Warning(f'Translating to {to_code}...')
    
#     url = 'https://meity-auth.ulcacontrib.org/ulca/apis/v0/model/getModelsPipeline'
#     headers = {
#         "Content-Type": "application/json",
#         "userID": bhashini_user_id,
#         "ulcaApiKey": bhashini_api_key
#     }
#     payload = {
#         "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}}}],
#         "pipelineRequestConfig": {"pipelineId": "64392f96daac500b55c543cd"}
#     }
    
#     print('Sending initial request to get the pipeline...')
#     response = requests.post(url, json=payload, headers=headers)
    
#     if response.status_code != 200:
#         print(f'Error in initial request: {response.status_code}, Response: {response.text}')
#         return {"status_code": response.status_code, "message": "Error in translation request", "translated_content": None}

#     print('Initial request successful, processing response...')
#     response_data = response.json()
#     print('Full response data:', response_data)  # Debug the full response
#     if "pipelineInferenceAPIEndPoint" not in response_data or "callbackUrl" not in response_data["pipelineInferenceAPIEndPoint"]:
#         print('Unexpected response structure:', response_data)
#         return {"status_code": 400, "message": "Unexpected API response structure", "translated_content": None}

#     service_id = response_data["pipelineResponseConfig"][0]["config"][0]["serviceId"]
#     callback_url = response_data["pipelineInferenceAPIEndPoint"]["callbackUrl"]
    
#     print(f'Service ID: {service_id}, Callback URL: {callback_url}')
    
#     headers2 = {
#         "Content-Type": "application/json",
#         response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["name"]: response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["value"]
#     }
#     compute_payload = {
#         "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}, "serviceId": service_id}}],
#         "inputData": {"input": [{"source": text}], "audio": [{"audioContent": None}]}
#     }
    
#     print(f'Sending translation request with text: "{text}"')
#     compute_response = requests.post(callback_url, json=compute_payload, headers=headers2)
    
#     if compute_response.status_code != 200:
#         print(f'Error in translation request: {compute_response.status_code}, Response: {compute_response.text}')
#         return {"status_code": compute_response.status_code, "message": "Error in translation", "translated_content": None}
    
#     print('Translation request successful, processing translation...')
#     compute_response_data = compute_response.json()
#     translated_content = compute_response_data["pipelineResponse"][0]["output"][0]["target"]
    
#     print(f'Translation successful. Translated content: "{translated_content}"')
#     return {"status_code": 200, "message": "Translation successful", "translated_content": translated_content}

# # Initialize PhiData Agent
# agent = Agent(
#     name="Science Education Assistant",
#     role="You are a helpful science tutor for 10th-grade students",
#     instructions=[
#         "You are an expert science teacher specializing in 10th-grade curriculum.",
#         "Provide clear, accurate, and age-appropriate explanations.",
#         "Use simple language and examples that students can understand.",
#         "Focus on concepts from physics, chemistry, and biology.",
#         "Structure responses with headings and bullet points when helpful.",
#         "Encourage learning and curiosity."
#     ],
#     model=Groq(id="llama3-70b-8192", api_key=api_key),
#     markdown=True
# )

# # Response Generation Function
# def retrieve_and_generate_response(query, cross_encoder_choice, history=None):
#     """Generate response using semantic search and LLM"""
#     top_rerank = 25
#     top_k_rank = 20
    
#     if not query.strip():
#         return "Please provide a valid question."
    
#     try:
#         start_time = perf_counter()
        
#         # Encode query and search documents
#         query_vec = retriever.encode(query)
#         documents = table.search(query_vec, vector_column_name="vector").limit(top_rerank).to_list()
#         documents = [doc["text"] for doc in documents]
        
#         # Re-rank documents using cross-encoder
#         cross_encoder_model = CrossEncoder('BAAI/bge-reranker-base') if cross_encoder_choice == '(ACCURATE) BGE reranker' else CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
#         query_doc_pair = [[query, doc] for doc in documents]
#         cross_scores = cross_encoder_model.predict(query_doc_pair)
#         sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
#         documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
        
#         # Create context from top documents
#         context = "\n\n".join(documents[:10]) if documents else ""
#         context = f"Context information from educational materials:\n{context}\n\n"
        
#         # Add conversation history for context
#         history_context = ""
#         if history and len(history) > 0:
#             for user_msg, bot_msg in history[-2:]:  # Last 2 exchanges
#                 if user_msg and bot_msg:
#                     history_context += f"Previous Q: {user_msg}\nPrevious A: {bot_msg}\n"
        
#         # Create full prompt
#         full_prompt = f"{history_context}{context}Question: {query}\n\nPlease answer the question using the context provided above. If the context doesn't contain relevant information, use your general knowledge about 10th-grade science topics."
        
#         # Generate response
#         response = agent.run(full_prompt)
#         response_text = response.content if hasattr(response, 'content') else str(response)
        
#         logger.info(f"Response generation took {perf_counter() - start_time:.2f} seconds")
#         return response_text
    
#     except Exception as e:
#         logger.error(f"Error in response generation: {e}")
#         return f"Error generating response: {str(e)}"

# def simple_chat_function(message, history, cross_encoder_choice):
#     """Chat function with semantic search and retriever integration"""
#     if not message.strip():
#         return "", history
    
#     # Generate response using the semantic search function
#     response = retrieve_and_generate_response(message, cross_encoder_choice, history)
    
#     # Add to history
#     history.append([message, response])
    
#     return "", history

# def translate_text(selected_language, history):
#     """Translate the last response in history to the selected language."""
#     iso_language_codes = {
#         "Hindi": "hi", "Gom": "gom", "Kannada": "kn", "Dogri": "doi", "Bodo": "brx", "Urdu": "ur",
#         "Tamil": "ta", "Kashmiri": "ks", "Assamese": "as", "Bengali": "bn", "Marathi": "mr",
#         "Sindhi": "sd", "Maithili": "mai", "Punjabi": "pa", "Malayalam": "ml", "Manipuri": "mni",
#         "Telugu": "te", "Sanskrit": "sa", "Nepali": "ne", "Santali": "sat", "Gujarati": "gu", "Odia": "or"
#     }
    
#     to_code = iso_language_codes[selected_language]
#     response_text = history[-1][1] if history and history[-1][1] else ''
#     print('response_text for translation', response_text)
#     translation = bhashini_translate(response_text, to_code=to_code)
#     return translation.get('translated_content', 'Translation failed.')

# # Gradio Interface with layout template
# with gr.Blocks(title="Science Chatbot", theme='gradio/soft') as demo:
#     # Header section
#     with gr.Row():
#         with gr.Column(scale=10):
#             gr.HTML(value="""<div style="color: #FF4500;"><h1>Welcome! I am your friend!</h1>Ask me !I will help you<h1><span style="color: #008000">I AM A CHATBOT FOR 10TH SCIENCE WITH TRANSLATION IN 22 LANGUAGES</span></h1></div>""")
#             gr.HTML(value=f"""<p style="font-family: sans-serif; font-size: 16px;">A free chat bot developed by K.M.RAMYASRI,TGT,GHS.SUTHUKENY using Open source LLMs for 10 std students</p>""")
#             gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;"> Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""")
#         with gr.Column(scale=3):
#             try:
#                 gr.Image(value='logo.png', height=200, width=200)
#             except:
#                 gr.HTML("<div style='height: 200px; width: 200px; background-color: #f0f0f0; display: flex; align-items: center; justify-content: center;'>Logo</div>")

#     # Chat and input components
#     chatbot = gr.Chatbot(
#         [],
#         elem_id="chatbot",
#         avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
#                        'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
#         bubble_full_width=False,
#         show_copy_button=True,
#         show_share_button=True,
#     )

#     with gr.Row():
#         msg = gr.Textbox(
#             scale=3,
#             show_label=False,
#             placeholder="Enter text and press enter",
#             container=False,
#         )
#         submit_btn = gr.Button(value="Submit text", scale=1, variant="primary")

#     # Additional controls
#     cross_encoder = gr.Radio(
#         choices=['(FAST) MiniLM-L6v2', '(ACCURATE) BGE reranker'],
#         value='(ACCURATE) BGE reranker',
#         label="Embeddings Model",
#         info="Select the model for document ranking"
#     )
#     language_dropdown = gr.Dropdown(
#         choices=[
#             "Hindi", "Gom", "Kannada", "Dogri", "Bodo", "Urdu", "Tamil", "Kashmiri", "Assamese", "Bengali", "Marathi",
#             "Sindhi", "Maithili", "Punjabi", "Malayalam", "Manipuri", "Telugu", "Sanskrit", "Nepali", "Santali",
#             "Gujarati", "Odia"
#         ],
#         value="Hindi",
#         label="Select Language for Translation"
#     )
#     translated_textbox = gr.Textbox(label="Translated Response")

#     # Event handlers
#     def update_chat_and_translate(message, history, cross_encoder_choice, selected_language):
#         if not message.strip():
#             return "", history, ""
        
#         # Generate response
#         response = retrieve_and_generate_response(message, cross_encoder_choice, history)
#         history.append([message, response])
        
#         # Translate response
#         translated_text = translate_text(selected_language, history)
        
#         return "", history, translated_text

#     msg.submit(update_chat_and_translate, [msg, chatbot, cross_encoder, language_dropdown], [msg, chatbot, translated_textbox])
#     submit_btn.click(update_chat_and_translate, [msg, chatbot, cross_encoder, language_dropdown], [msg, chatbot, translated_textbox])

#     clear = gr.Button("Clear Conversation")
#     clear.click(lambda: ([], "", ""), outputs=[chatbot, msg, translated_textbox])

#     # Example questions
#     gr.Examples(
#         examples=[
#             'What is the difference between metals and non-metals?',
#             'What is an ionic bond?',
#             'Explain asexual reproduction',
#             'What is photosynthesis?',
#             'Explain Newton\'s laws of motion'
#         ],
#         inputs=msg,
#         label="Try these example questions:"
#     )

# if __name__ == "__main__":
#     demo.launch(server_name="0.0.0.0", server_port=7860)

# 1f# import gradio as gr# import requests
# # import gradio as gr
# # from ragatouille import RAGPretrainedModel
# # import logging
# # from pathlib import Path
# # from time import perf_counter
# # from sentence_transformers import CrossEncoder
# # from huggingface_hub import InferenceClient
# # from jinja2 import Environment, FileSystemLoader
# # import numpy as np
# # from os import getenv
# # from backend.query_llm import generate_hf, generate_qwen
# # from backend.semantic_search import table, retriever
# # from huggingface_hub import InferenceClient


# # # Bhashini API translation function
# # api_key = getenv('API_KEY')
# # user_id = getenv('USER_ID')

# # def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") -> dict:
# #     """Translates text from source language to target language using the Bhashini API."""
    
# #     if not text.strip():
# #         print('Input text is empty. Please provide valid text for translation.')
# #         return {"status_code": 400, "message": "Input text is empty", "translated_content": None, "speech_content": None}
# #     else:
# #         print('Input text - ',text)
# #     print(f'Starting translation process from {from_code} to {to_code}...')
# #     print(f'Starting translation process from {from_code} to {to_code}...')
# #     gr.Warning(f'Translating to {to_code}...')
    
# #     url = 'https://meity-auth.ulcacontrib.org/ulca/apis/v0/model/getModelsPipeline'
# #     headers = {
# #         "Content-Type": "application/json",
# #         "userID": user_id,
# #         "ulcaApiKey": api_key
# #     }
# #     payload = {
# #         "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}}}],
# #         "pipelineRequestConfig": {"pipelineId": "64392f96daac500b55c543cd"}
# #     }
    
# #     print('Sending initial request to get the pipeline...')
# #     response = requests.post(url, json=payload, headers=headers)
    
# #     if response.status_code != 200:
# #         print(f'Error in initial request: {response.status_code}')
# #         return {"status_code": response.status_code, "message": "Error in translation request", "translated_content": None}

# #     print('Initial request successful, processing response...')
# #     response_data = response.json()
# #     service_id = response_data["pipelineResponseConfig"][0]["config"][0]["serviceId"]
# #     callback_url = response_data["pipelineInferenceAPIEndPoint"]["callbackUrl"]
    
# #     print(f'Service ID: {service_id}, Callback URL: {callback_url}')
    
# #     headers2 = {
# #         "Content-Type": "application/json",
# #         response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["name"]: response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["value"]
# #     }
# #     compute_payload = {
# #         "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}, "serviceId": service_id}}],
# #         "inputData": {"input": [{"source": text}], "audio": [{"audioContent": None}]}
# #     }
    
# #     print(f'Sending translation request with text: "{text}"')
# #     compute_response = requests.post(callback_url, json=compute_payload, headers=headers2)
    
# #     if compute_response.status_code != 200:
# #         print(f'Error in translation request: {compute_response.status_code}')
# #         return {"status_code": compute_response.status_code, "message": "Error in translation", "translated_content": None}
    
# #     print('Translation request successful, processing translation...')
# #     compute_response_data = compute_response.json()
# #     translated_content = compute_response_data["pipelineResponse"][0]["output"][0]["target"]
    
# #     print(f'Translation successful. Translated content: "{translated_content}"')
# #     return {"status_code": 200, "message": "Translation successful", "translated_content": translated_content}


# # # Existing chatbot functions
# # VECTOR_COLUMN_NAME = "vector"
# # TEXT_COLUMN_NAME = "text"
# # HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN")
# # proj_dir = Path(__file__).parent

# # logging.basicConfig(level=logging.INFO)
# # logger = logging.getLogger(__name__)
# # client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1", token=HF_TOKEN)
# # env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))

# # template = env.get_template('template.j2')
# # template_html = env.get_template('template_html.j2')

# # # def add_text(history, text):
# # #     history = [] if history is None else history
# # #     history = history + [(text, None)]
# # #     return history, gr.Textbox(value="", interactive=False)

# # def bot(history, cross_encoder):

# #     top_rerank = 25
# #     top_k_rank = 20
# #     query = history[-1][0] if history else ''
# #     print('\nQuery: ',query )
# #     print('\nHistory:',history)
# #     if not query:
# #         gr.Warning("Please submit a non-empty string as a prompt")
# #         raise ValueError("Empty string was submitted")

# #     logger.warning('Retrieving documents...')
    
# #     if cross_encoder == '(HIGH ACCURATE) ColBERT':
# #         gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait')
# #         RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
# #         RAG_db = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
# #         documents_full = RAG_db.search(query, k=top_k_rank)
        
# #         documents = [item['content'] for item in documents_full]
# #         prompt = template.render(documents=documents, query=query)
# #         prompt_html = template_html.render(documents=documents, query=query)
    
# #         generate_fn = generate_hf
    
# #         history[-1][1] = ""
# #         for character in generate_fn(prompt, history[:-1]):
# #             history[-1][1] = character
# #             yield history, prompt_html
# #     else:
# #         document_start = perf_counter()
    
# #         query_vec = retriever.encode(query)
# #         doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank)
    
# #         documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list()
# #         documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
    
# #         query_doc_pair = [[query, doc] for doc in documents]
# #         if cross_encoder == '(FAST) MiniLM-L6v2':
# #             cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
# #         elif cross_encoder == '(ACCURATE) BGE reranker':
# #             cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
        
# #         cross_scores = cross_encoder1.predict(query_doc_pair)
# #         sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
        
# #         documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
    
# #         document_time = perf_counter() - document_start
    
# #         prompt = template.render(documents=documents, query=query)
# #         prompt_html = template_html.render(documents=documents, query=query)
    
# #         #generate_fn = generate_hf
# #         generate_fn=generate_qwen
# #         # Create a new history entry instead of modifying the tuple directly
# #         new_history = history[:-1] + [ (prompt, "") ] # query replaced prompt
# #         output=''
# #         # for character in generate_fn(prompt, history[:-1]):
# #         #     #new_history[-1] = (query, character) 
# #         #     output+=character
# #         output=generate_fn(prompt, history[:-1])
        
# #         print('Output:',output)
# #         new_history[-1] = (prompt, output) #query replaced with prompt
# #         print('New History',new_history)
# #         #print('prompt html',prompt_html)# Update the last tuple with new text
        
# #         history_list = list(history[-1])
# #         history_list[1] = output  # Assuming `character` is what you want to assign
# #         # Update the history with the modified list converted back to a tuple
# #         history[-1] = tuple(history_list)

# #             #history[-1][1] = character
# #         # yield new_history, prompt_html
# #         yield history, prompt_html
# #          # new_history,prompt_html
# #         # history[-1][1] = ""
# #         # for character in generate_fn(prompt, history[:-1]):
# #         #     history[-1][1] = character
# #         #     yield history, prompt_html

# # #def translate_text(response_text, selected_language):
    
# # def translate_text(selected_language,history):
    
# #     iso_language_codes = {
# #         "Hindi": "hi",
# #         "Gom": "gom",
# #         "Kannada": "kn",
# #         "Dogri": "doi",
# #         "Bodo": "brx",
# #         "Urdu": "ur",
# #         "Tamil": "ta",
# #         "Kashmiri": "ks",
# #         "Assamese": "as",
# #         "Bengali": "bn",
# #         "Marathi": "mr",
# #         "Sindhi": "sd",
# #         "Maithili": "mai",
# #         "Punjabi": "pa",
# #         "Malayalam": "ml",
# #         "Manipuri": "mni",
# #         "Telugu": "te",
# #         "Sanskrit": "sa",
# #         "Nepali": "ne",
# #         "Santali": "sat",
# #         "Gujarati": "gu",
# #         "Odia": "or"
# #     }
    
# #     to_code = iso_language_codes[selected_language]
# #     response_text = history[-1][1] if history else ''
# #     print('response_text for translation',response_text)
# #     translation = bhashini_translate(response_text, to_code=to_code)
# #     return translation['translated_content']
   

# # # Gradio interface
# # with gr.Blocks(theme='gradio/soft') as CHATBOT:
# #     history_state = gr.State([])
# #     with gr.Row():
# #         with gr.Column(scale=10):
# #             gr.HTML(value="""<div style="color: #FF4500;"><h1>Welcome! I am your friend!</h1>Ask me !I will help you<h1><span style="color: #008000">I AM A CHATBOT FOR 9 SCIENCE WITH TRANSLATION IN 22 LANGUAGES</span></h1></div>""")
# #             gr.HTML(value=f"""<p style="font-family: sans-serif; font-size: 16px;">A free chat bot developed by K.M.RAMYASRI,TGT,GHS.SUTHUKENY using Open source LLMs for 10 std students</p>""")
# #             gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;"> Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""")

# #         with gr.Column(scale=3):
# #             gr.Image(value='logo.png', height=200, width=200)

# #     chatbot = gr.Chatbot(
# #         [],
# #         elem_id="chatbot",
# #         avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
# #                        'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
# #         bubble_full_width=False,
# #         show_copy_button=True,
# #         show_share_button=True,
# #     )

# #     with gr.Row():
# #         txt = gr.Textbox(
# #             scale=3,
# #             show_label=False,
# #             placeholder="Enter text and press enter",
# #             container=False,
# #         )
# #         txt_btn = gr.Button(value="Submit text", scale=1)
    
# #     cross_encoder = gr.Radio(choices=['(FAST) MiniLM-L6v2', '(ACCURATE) BGE reranker', '(HIGH ACCURATE) ColBERT'], value='(ACCURATE) BGE reranker', label="Embeddings", info="Only First query to Colbert may take little time)")
# #     language_dropdown = gr.Dropdown(
# #         choices=[
# #             "Hindi", "Gom", "Kannada", "Dogri", "Bodo", "Urdu", "Tamil", "Kashmiri", "Assamese", "Bengali", "Marathi",
# #             "Sindhi", "Maithili", "Punjabi", "Malayalam", "Manipuri", "Telugu", "Sanskrit", "Nepali", "Santali",
# #             "Gujarati", "Odia"
# #         ],
# #         value="Hindi",  # default to Hindi
# #         label="Select Language for Translation"
# #     )
    
# #     prompt_html = gr.HTML()
    
# #     translated_textbox = gr.Textbox(label="Translated Response")
# #     def update_history_and_translate(txt, cross_encoder, history_state, language_dropdown):
# #         print('History state',history_state)
# #         history = history_state
# #         history.append((txt, ""))
# #         #history_state.value=(history)
        
# #         # Call bot function
# #         # bot_output = list(bot(history, cross_encoder))
# #         bot_output = next(bot(history, cross_encoder))
# #         print('bot_output',bot_output)
# #         #history, prompt_html = bot_output[-1]
# #         history, prompt_html = bot_output
# #         print('History',history)
# #         # Update the history state
# #         history_state[:] = history
        
# #         # Translate text
# #         translated_text = translate_text(language_dropdown, history)
# #         return history, prompt_html, translated_text

# #     txt_msg = txt_btn.click(update_history_and_translate, [txt, cross_encoder, history_state, language_dropdown], [chatbot, prompt_html, translated_textbox])
# #     txt_msg = txt.submit(update_history_and_translate, [txt, cross_encoder, history_state, language_dropdown], [chatbot, prompt_html, translated_textbox])

# #     examples = ['WHAT IS DIFFERENCES BETWEEN HOMOGENOUS AND HETEROGENOUS MIXTURE?','WHAT IS COVALENT BOND?',
# #             'EXPLAIN GOLGI APPARATUS']            

# #     gr.Examples(examples, txt)


# # # Launch the Gradio application
# # CHATBOT.launch(share=True,debug=True)